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a-THEORY FOR
NEWTON-MOSER METHOD

José M. Gutiérrez, Miguel A. Hernandez and Natalia Romero

Abstract. We study the semilocal convergence of Newton-Moser method to solve non-
linear equations F(x) = 0 defined in Banach spaces. The method defines a sequence {x,}
that under appropriate conditions converges to a solution of the aforesaid equation. In
fact, by following the known as a-theory, we give conditions on the starting point x, and
on the derivatives of the operator F in order to establish such convergence. Finally, as an
application, we apply this theory to the study of a kind of integral equations.
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§1. Introduction

Newton-Moser method is a method to numerically solve nonlinear equations. In order to
consider the more general case, let us consider a nonlinear equation

F(x)=0, 1)

where F is an operator defined between two Banach spaces X and Y. Let us assume that x* is
a simple root of (1).
Newton-Moser method is an iterative method defined by

n+l = n_BnF n)s ZO,
{x+1 X (x), n )

By = 2B, — B,F'(Xy41)B,, 120,

where x is a given point in X and By is a given linear operator from Y to X.

The method exhibits several attractive features. First, it avoids the calculus of inverse
operators that appears in Newton’s method, x,+1 = x, — F'(x,) "' F(x,), n > 0. So it is not
necessary to solve a linear equation at each iteration. Second, it has quadratic convergence,
the same as Newton’s method. Third, in addition to solve the nonlinear equation (1), the
method produces successive approximations {B,} to the value of F’(x*)”!, being x* a solution
of (1). This property is very helpful when one investigates the sensitivity of the solution to
small perturbations.

We find the origin of the method in a Moser’s work [6] for investigating the stability of
the N-body problem in Celestial Mechanics. The main difficulty in this, and similar problems
involving small divisors, is the solution of a system of nonlinear partial differential equations.
In fact, Moser proposed the following method

n+l = n_AnF n)s ZO,
{x+1 X (x), n 3)

Ap1 = A, - An(F/(xn)An -, nx0,



156 José M. Gutiérrez, Miguel A. Herndndez and Natalia Romero

for a given xy € X, a given Ay € L(Y, X), the set of linear operators from Y to X, and where /
is the identity operator in X.

Notice that the first equation is similar to Newton’s method, but replacing the operator
F’(x,)”" by alinear operator A,,. The second equation is Newton’s method applied to equation
gn(A) = 0 where g, : L(Y,X) — L(X,Y) is defined by g,(A) = A~ — F'(x,). So {A,} gives
us an approximation of F”’(x,)”".

Method (3), firstly proposed by Moser, has a rate of convergence of (1 + V5)/2 for simple
roots. However, the variant (2) later introduced by Ulm [9] reaches quadratic convergence.
Notice that in (2) F’(x,+1) appears instead of F”(x,).

Since then, method (2) has been also considered by other authors. For instance, Hald [4]
showed the quadratic convergence of the method. Later, Petzeltova [7] studied the conver-
gence of the method under Kantorovich-type conditions.

Recently, in [2] a system of recurrence relations is given in order to analyze the conver-
gence of Newton-Moser method (2) under estimations at one point. This theory, introduced
by Smale [8], is an alternative to Kantorovich theory [5] to study the semilocal convergence
of iterative processes to solve nonlinear equations. Roughly speaking, if xy is an initial value
such that the sequence {x,} satisfies

2"—1
Iy — x| < (5) llxo — °Il

then xj is said to be an approximate zero of F. The following conditions were introduced by
Smale [8] in order to prove that x( is an approximated zero

|F"(xo)™ F(xo)|| < . (4a)

| TN 1/Ge-1)
sup (E |IF (o) F (xo>||) <, (4b)
a=By<3-2V2. (4¢)

Wang and Zhao [10] pointed that condition (4) is too restrictive. Instead of (4) they assume

[|F"(x0)™ F(xo)|| < B. (5a)

1
il |F"(x0) ' FOGxo)|| < i, k> 2, (5b)

{the equation ¢(f) = 0 has at least a positive
(50

solution, where ¢() = 8 —t + Z 12 )’klk-

In [2] the semilocal convergence of Newton-Moser method is established from a system
of recurrence relations. However, a majorizing function, as the given in (5c), is not provided.
In this paper we present a majorizing function for Newton-Moser method and we give an
analysis of its convergence by following the patterns of the a-theory introduced by Smale.
The semilocal convergence hypothesis and the main theorem are shown in section 2.
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§2. Semilocal convergence results (a-theory)

In this section we study the semilocal convergence of Newton-Moser method (2) to solve the
nonlinear equation (1). Let us assume that F is a nonlinear operator defined from an open
subset Q in a Banach space X to another Banach space Y. Let xo € Q be a given point and
By € L(Y, X) a given linear operator defined from Y to X.

Instead the aforesaid conditions (4) or (5), we consider the following ones:

|1BoF (xo)ll < o, (62)
lI = BoF' (xop)ll <B < 1, (6b)
I1BoF Y (xo)l| < y;, for j>2, (6¢)
there exists R > 0 such that the series
. 6d
Z o ¥,t’/ j! is convergent for ¢ € [0, R), 6d)
iz
f <0, (6e)
where 7 is the absolute minimum of the function
1 .
O =yo+@B=Dr+ Y =yt 120, %)
—4 ;!
j>2
In addition, we consider the following scalar sequence
tO = 05 bO = _la
il =1 — bnf(tn)’ (8)

bn+1 =2b, - bnf,(tn+l)bn~

Condition (6e) allows us to say that function f(#) defined in (7) has at least one positive
root. Let us denote #* the smallest positive solution of f(¢) = 0. With the rest of conditions in
(6), (7), (8), we can show that {¢,} is an increasing monotone sequence to t* and

”xn+l - xn” Sty — Iy, 12 0. (9)

Consequently, as {#,} is a convergent sequence and {x,} is a sequence defined in a Banach
space, {x,} converges to a limit x*, that can be shown it is a solution of the nonlinear equa-
tion (1).

In a more explicit way, the aforementioned comments are shown in the following results.

Theorem 1. Let us consider the scalar sequences {t,} and {b,} defined in (8). Then the
following relations hold:

1. b, <0.
2. buf'(t) < 1.

3. t, < tyy1 <, where t* is the smallest positive root of (7).
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Proof. Firstly we notice that f”/(¢) > O for ¢ > 0. Then, as f'(0) = f—1 < 0 and lim,,, f(¢) =
oo, there exists a only value 7 € (0, oo) such that f(f) = 0. Then, condition (6d) guarantees the
existence of positive roots of function f(¢) defined in (7).

Now we prove the aforementioned are true for n > 0 by following an inductive reasoning.
For n = 0 these relations are obviously true. If we suppose they are true for a given value of
n, then b,y1 = b, (2 — b, f'(t,11)) < 0, since b, f(t,11) < b, f'(t,) < 1.

In addition, as (1 = b, f’(t1))* > 0, then by f'(tur1) = 2buf (tar1) = bpf (tar1)* < 1.
Now we have t,,5 — ty+1 = —bpt1 f(t,+1) > 0 and finally,

- Iy = (1 - bn+lf,(r]n+l))(t* - tn+1)’

for nye1 € (1, 1) AS byt f/(Mns1) < b1 f/(t41) < 1, we conclude #* — t,,,, > 0 and the
induction is completed. O

Theorem 2. Under conditions (6), the scalar sequence {t,} defined in (8) is a majorizing
function for {x,} defined in (2), that is,

”xn+l - xn” Sty — Iy, 12 0. (10)
Consequently, {x,} converges to a limit x".

Proof. Formula (10) can be proved by following an inductive reasoning. In fact, we can
prove that the following inequalities hold for n > 0:

(I) ”I - BnF/(-xn)” < 1 - bnf,(tn)~
D) 1B, Fx)ll < by f(t).
1) IB,FD(x)ll < =bufD (1), j = 2.

Notice that (I) is equivalent to (10).

The aforesaid inequalities are clear for n = 0, just by taking into account (6). Now, if we
assume they are true for O, 1, ..., n, then we can prove they are also true for n + 1.

Firstly, by (2), we have the following relationships:

I = Bt F'(xp11) = (I = ByF' (X41))%

1 . .
I —B,F'(x441) =1 - B,F'(x,) — Z TBHF(JH)(xn)(an - X),
j=1 7
I = BoF' (xns )l < 1= by f (t41), (11
”I - Bn+1F,(xn+])” < (1 - bnf,(tn+1))2 =1- bn+lf,(tn+l)~

Then, (I) happens for n + 1.
Secondly,

1 . .
ByF (1) = (I = ByF (x,)BaF(x,) + ) ﬁBnF‘”(xn)(xm = ).

j=2 7
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Consequently,

1 . .
IBAF Gl < (1= b f () (=bu (1)) + ) S Chuf Pt tner = 1Y

=2

1 . )
= _bnf(tn)) - bnf/(tn)(trwl — 1)+ Z 7(_bnf(1)(tn))(tn+l - tn)j = _bnf(tn+l)'

A

Then, by taking norms in By, F(x,41) = (21 — B, F'(xp41))BnF(x,11), we show that (IT) also
holds for n + 1. In fact,

||Bn+1F(-xn+l)” < _(2 - bnf/(tn+l)(bnf(tn+l)) = _bn+1f(tn+1)-
Finally,

. 1 .
1Bust FO o)l < 2= buf () D 5 (=baf P 0 tner = 1)
k>0

= _(2 - bnf/(tn-*—l))(bnf(j)(tnﬂ)) = _bn+lf(j)(tn+l)‘

Then (IIT) also holds and the induction is complete.
Now, as {t,} is a increasing sequence that converges to t*, and the sequence {x,} is defined
in a Banach space, {x,} converges to a limit x*. O

Theorem 3. Let x* be the limit of the sequence {x,} defined in (2). Then, if ||Bo|| < 1, x* is a
solution of (1), that is F(x*) = 0.

Proof. Notice that ||By|| < 1 = —by. Then, taking into account (11) and the relationship
B,=U+{- B,_1F'(x,))B,_1, we can show that ||B,|| < —b, forn > 0.

In addition, as B,.; — B, = ((I — B,F'(x,41))B,, we have ||B,.1 — B,l|| < b,+1 — b, for
n > 0 and then {B,} is a Cauchy sequence. Consequently, there exists a linear operator B*
such that B* = lim,_, B,, B*F’(x*) = I. Then (see [5, Th. 2, p. 153]) there exists F’(x*)~!
and ||[F’(x*)~!|| < —=1/f"(¢*). This fact, together with (II) in the proof of Theorem 2 guarantees
that F(x*) = 0. |

§3. Application to Fredholm integral equations

In this section we consider the following integral equation:

b
x(t) = z(r) + /lf k(t, )H(x(s))ds, t€ [a,b],

where z is a given continuous function, H is an analytic function, k is a kernel continuous
in its two variables and A is a real parameter. This equation can be written as a equation
F(x) = 0, where F : X — X is an operator defined on X = Cl[a, b], the space of continuous
functions in the interval [a, b]. The expression of such operator is the following:

b
F)@®) = x(t) — 2() — A f k(t, s)H($(s))ds, 1€ [a,b]. (12)



160 José M. Gutiérrez, Miguel A. Herndndez and Natalia Romero

In the space of continuous functions in [a, b] we consider the max-norm:
llgll = max lg(®)l, g € Cla,b].
tela,b]

For the kernel k£ we define .
Il = max f lk(t, 5)| ds.
telabl J,

In [3] Newton’s method has been considered for studying the solution of (12). The two
main problems of using Newton’s method for solving a nonlinear equation is the choice of
the initial approximation x, and the calculus of the inverses F’(x;)~! (or the corresponding
solution of a linear equation) at each step. In [3] the initial approximation is chosen as
xo(?) = z(¢) and then it is established a set of values for the parameter A in order equation (12)
has a solution. An estimate for the norm of F’(x,)~! is also given.

Now, in this section we use Newton-Moser method (2) for studying the solution of (12).
We consider the same choice for the initial approximation, that is xo(¢f) = z(f), but the calculus
of F’(xo)! it is not required now.

To construct the majorizing function (7) we need to calculate the parameters yg, 8 and y;,
j = 2, given in (6), by taking as starting point the function xo = z. The derivatives of order j
of (12) are j-linear operators from the space X/ on X given by:

b
F’(X)[yl](f)=y1(t)—/lf k(t, )H' (x()y1(5) ds,

b
FOXy,...,y;lt) = -2 f k(t, YHD (x(s)y1 (D) - -y (0 ds, j = 2.

a

Now we consider a particular integral equation of type (12). We take xo(f) = z(¢) and
By = I, the identity operator, as starting values for Newton-Moser method (2) and we study
the existence of solutions for the corresponding majorizing equation f(#) = 0, with f defined
in (7). Notice that different convergence results could be obtained under different choices for
xo(t) and By.

Let us consider the nonlinear integral equation

1
Fx)() =x(t)-1- /lf cos(mrst)x(s)" ds. (13)
0
We take xo(f) = 1 for all t € [0, 1] and By = I. Then, yy = |4|, 8 = m|4| and

{I/llm(m— Deo(m—j+1), if2<j<m,
Yi=

0 if j>m.

Consequently the majorizing function (7) is given by

F@ =1+ Gl = e+ 1) (’7)# = AT+ 1y — 1.
=2
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n  Newton-Moser method (2) o

1 1.180118 x 107! 1.78711
2 2.14224 x 1073 1.84597
3 3.57016 x 107 1.92453
4 1.30970 x 108 1.96938
5 2.24399 x 10713 1.98755

Table 1: Error estimates (10) and the computational order of convergence (14)

If m|A] < 1 this function has an absolute minimum 7 = —1 +(m |4])~"*~D and, in addition,
f@ <o.

Then, according with the results of the previous section, we have established a result on
the existence of solution for equations (13). In fact, if || < 1/m, the integral equation (13) has
a solution. In addition, this solution can be approximated by using Newton-Moser method (2)
starting with xo(¢#) = 1 and By = 1.

For instance, if we consider m = 5and A = 2—10 then, function

1
f@ =55 (1= 15¢+ 107 + 107 + 5¢* + 7°),

is the majorizing function of sequence {x,} and, r* = 0.0701898 is the smallest positive root
of f.

Using the majorizing sequence {#,}, we show in Table 1 a priori error estimates (10) and
the computational order of convergence [1]:

s =21 M =2
I, — 2| ey — I

nen, (14)

when Newton-Moser method (2) is applied to solve equation (13).

Now, from Theorem 3 the integral equation (13) has a solution x* in B(1,0.0701898)
which is the limit of the iterations of Newton-Moser method (2) starting with xo(r) = 1 and
B() =1I:

x1(6) = 1 +0.015915493 ! sin(3.14159 1),

x() =1+0.017615759 ' sin(3.14159 1),
x3(t) = 1 +0.017633935 ' sin(3.14159 1),
x4() = 1 +0.017633938 ' sin(3.14159 7).

Considering iteration x4(f) as a numerical solution x* of integral equation (13) and the
computational order of convergence:

nen, (15)

n ~

11 () — X"II/l llxn () — Xl
n

llx, (1) — x*| ll-1(2) = x*II”

Newton-Moser method reach computationally the R-order of convergence at least two. In
fact, p; = 1.95368 and p, = 1.97401.
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