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Abstract. In this paper Local Fourier Analysis (LFA) for multigrid methods on triangular
grids is extended to the case of systems of PDEs. In particular, it is performed for the
problem of planar elasticity, although its application to other systems is straightforward.
Analogously to the scalar case, this analysis is based on an expression of the Fourier
transform in new coordinate systems, both in space and in frequency variables, associated
with reciprocal bases. LFA is particularly valuable for systems of PDEs, since it is often
much more difficult to identify the correct multigrid components than for a scalar problem.
For the discrete elasticity operator obtained with linear finite elements, different collective
smoothers like three-color smoother and some zebra-type smoothers are analyzed. LFA
results for these smoothers are presented.

Keywords: Geometric multigrid, Fourier analysis, three-color smoother, triangular grids,
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§1. Introduction

Planar elasticity models the displacements of an elastic body Ω ⊂ R2, subject to a force den-
sity f, with respect to its original configuration. These displacements are described by means
of a vector function u = (u, v), which is the solution of the following system of equations

L u = −µ∆u − (λ + µ)grad(div u) = f, in Ω,

where ∆ is the vector Laplace operator, λ and µ are the so-called Lamè’s coefficients, and
f = ( f1, f2) ∈ (L2(Ω))2. Here, a discretization by linear finite elements of this elasticity
operator is considered,

Lh =

(
Lu,u

h Lu,v
h

Lv,uh Lv,vh

)
=

(
−(λ + 2µ)(∂xx)h − µ(∂yy)h −(λ + µ)(∂xy)h

−(λ + µ)(∂xy)h −µ(∂xx)h − (λ + 2µ)(∂yy)h

)
.

The algebraic linear equation system arising from this discretization will be solved by
means of a geometric multigrid algorithm, due to the fact that these methods are among the
most efficient numerical algorithms for solving this kind of systems. In geometric multigrid, a



146 F. J. Gaspar, J. L. Gracia, F. J. Lisbona and C. Rodrigo

hierarchy of grids must be proposed. For an irregular domain, it is very common to apply reg-
ular refinement to an unstructured input grid; in this way, a hierarchy of globally unstructured
grids is generated that is suitable for use with geometric multigrid. So, we are interested in
the framework of hierarchical hybrid grids (HHG) which was presented in [1]. The coarsest
mesh is assumed rough enough in order to fit the geometry of the domain. Once this coarse
triangulation is given, each triangle is divided into four congruent triangles connecting the
midpoints of their edges, and so forth until the mesh has the desired fine scale to approximate
the solution of the problem. In this way, a nested hierarchy of grids is obtained.

As it is well-known, the construction of an efficient multigrid method is strongly de-
pendent on the choice of its components, which have to be selected so that they efficiently
interplay with each other. Especially, the choice of a suitable smoother is an important fea-
ture for the design of an efficient multigrid method. In this paper, linear interpolation has
been chosen, the restriction operator has been taken as its adjoint and the discrete operator
corresponding to each mesh results from the direct discretization of the problem. Moreover,
collective three-color smoother and some collective line-wise smoothers of zebra-type are
proposed as relaxing methods.

In order to choose suitable components for a multigrid method, LFA is used, due to its
being a powerful tool for the design of efficient multigrid methods. This analysis is mainly
based on the Fourier transform and was introduced by Brandt [2]. A good introduction can
be found in the books by Trottenberg et al. [4] and Wienands and Joppich [5]. This technique
has been widely used in the framework of discretizations on rectangular grids, and recently a
generalization to triangular grids has been proposed in [3]. The key fact for carrying out this
generalization is to write the Fourier transform using coordinates in non-orthogonal bases
fitting the new structure of the grid. In order to extend LFA to the case of the planar elasticity
system, a new expression of the Fourier transform for vector functions is considered. To
study multigrid methods in the framework of HHG, the LFA proposed here is applied to each
input triangle in such a way that the global behavior of the method will depend on the quality
of the chosen local components.

The organization of the paper is as follows. In Section 2, the way in which LFA can
be performed on non-orthogonal grids for systems of PDEs is explained. In section 3, the
relaxation methods considered, three-color and zebra-type smoothers are presented. Finally,
in Section 4, some LFA results are shown in order to choose the relaxation method of the
multigrid algorithm which is more suitable for different grid geometries.

§2. Fourier analysis on non-orthogonal grids

A non-orthogonal unitary basis of R2 is established: {e′1, e
′
2} with 0 < γ < π being the

angle between the vectors of the basis. It is also considered its reciprocal basis {e′′1 , e
′′
2 },

i.e., (e′i , e
′′
j ) = δi j, 1 ≤ i, j ≤ 2, where (·, ·) is the usual inner product in R2 and δi j is the

Kronecker’s delta, see Figure 1. The coordinates of a point in these bases, {e′1, e
′
2} and {e′′1 , e

′′
2 },

are y′ = (y′1, y
′
2) and y′′ = (y′′1 , y

′′
2 ), respectively, just like y = (y1, y2) in the canonical basis

{e1, e2}.
By applying the changes of variables x = F(x′) and θ = G(θ′′) to the usual Fourier

transform formula, the Fourier transform and its corresponding back transformation formula
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Figure 1: Reciprocal bases in R2.

with coordinates in a non-orthogonal basis, result in the following

û(G(θ′′)) =
sin γ

2π

∫
R2

e−iG(θ′′)·F(x′)u(F(x′)) dx′,

u(F(x′)) =
1

2π sin γ

∫
R2

eiG(θ′′)·F(x′)û(G(θ′′)) dθ′′.

Since the new bases are reciprocal bases, the inner product G(θ′′) · F(x′) is given by θ′′1 x′1 +

θ′′2 x′2. Using previous expressions, a discrete Fourier transform for non-rectangular grids can
be introduced. With this purpose, a uniform infinite grid is defined:

Gh = {x′ = (x′1, x
′
2) | x′i = kihi, ki ∈ Z, i = 1, 2},

where h = (h1, h2) is a grid spacing. Now, for a vector grid function uh, the discrete Fourier
transform and its back Fourier transformation can be defined by

ûh(θ′′) =
h1h2 sin γ

2π

∑
x′∈Gh

e−i(θ′′1 x′1+θ′′2 x′2)uh(x′),

uh(x′) =
1

2π sin γ

∫
Θh

ei(θ′′1 x′1+θ′′2 x′2)ûh(θ′′)dθ′′,
(1)

where θ′′ = (θ′′1 , θ
′′
2 ) ∈ Θh = (−π/h1, π/h1] × (−π/h2, π/h2] are the coordinates of the point

θ′′1 e′′1 + θ′′2 e′′2 in the frequency space. Considering the scalar Fourier modes, ϕh(θ′′, x′) =

eiθ′′1 x′1 eiθ′′2 x′2 , their vector counterparts are ϕh(θ′′, x′) B
(
ϕh(θ′′, x′), ϕh(θ′′, x′)

)t , with x′ ∈ Gh,
and θ′′ ∈ Θh. They give rise to the Fourier space, F (Gh) = span{ϕh(θ′′, ·) | θ′′ ∈ Θh}.
From (1), it follows that each discrete function uh(x′) ∈ (l2h(Gh))2 can be written as a formal
linear combination of the Fourier modes, which are linearly independent discrete functions.

Due to the fact that the grid and the frequency space are referred to as reciprocal bases, the
Fourier modes have a formal expression, in terms of θ′′ and x′, similar to those in Cartesian
coordinates. Therefore, the Local Fourier analysis on non-rectangular grids can be performed
straightforwardly.

LetTh be a regular triangular grid on a fixed coarse triangleT ; see left picture of Figure 2.
Th is extended to the infinite grid Gh given before, where e′1 and e′2 are unit vectors indicating
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Figure 2: Regular triangular grid on a fixed coarse triangle T and its extension to an infinite
grid.

the direction of two of the edges of T , and such that Th = Gh
⋂
T , see right picture of Figure

2. Neglecting boundary conditions and/or connections with other neighboring triangles of
the coarsest grid, the discrete problem Lhuh = fh can be extended to the whole grid Gh. As
it is well-known, vector Fourier modes ϕh(θ′′, x′) are formal eigenfunctions of the discrete
operator Lh. More precisely, it is fulfilled

Lhϕh(θ′′, x′) = L̃h(θ′′)ϕh(θ′′, x′), L̃h(θ′′) =

 L̃u,u
h (θ′′) L̃u,v

h (θ′′)

L̃v,uh (θ′′) L̃v,vh (θ′′)

 ,
where matrix L̃h(θ′′) is the Fourier symbol of Lh.

Using standard coarsening, high and low frequency components on Gh are distinguished,
in the way that the subset of low frequencies is Θ2h = (−π/2h1, π/2h1] × (−π/2h2, π/2h2],
and the subset of high frequencies is Θh \Θ2h.

From these definitions LFA smoothing and two-grid analysis can be performed as in
rectangular grids, and smoothing factors for the relaxing methods µ and two-grid convergence
factors ρ, which give the asymptotic convergence behavior of the method, can be well defined.

§3. Relaxing methods

Collective three-color smoother and some collective line-wise smoothers are proposed as re-
laxing methods. These smoothers appear as a natural extension to triangular grids of some
smoothers widely used on rectangular grids, as red-black Gauss-Seidel and line-wise relax-
ations of zebra type.

3.1. Three–color smoother
To apply three-color smoother, the grid associated with a fixed refinement level η of a triangle
T of the coarsest triangulation,

GT,h = {x′ = (x′1, x
′
2) | x′j = k jh j, k j ∈ Z, j = 1, 2, k1 = 0, . . . , 2η, k2 = 0, . . . , k1}, (2)
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Figure 3: Three-color smoother.

is split into three disjoint subgrids,

Gi
T,h = {x′ = (x′1, x

′
2) ∈ GT,h | x′j = k jh j, j = 1, 2, k1 + k2 = i (mod 3)}, i = 0, 1, 2,

each of them associated with a different color, as shown in Figure 3, so that the unknowns of
the same color have no direct connection with each other.

The complete three-color smoothing operator is given by the product of three partial op-
erators, Sh(ω) = S2

h(ω)S1
h(ω)S0

h(ω). In each partial relaxation step, only the grid points of Gi
T,h

are processed, whereas the remaining points are not treated, i.e.

Si
h(ω)vh(x′) =

[(Ih − ωD−1
h Lh)vh](x′), x′ ∈ Gi

T,h,

vh(x′), x′ ∈ GT,h \Gi
T,h,

where Dh is the diagonal part of the discrete operator Lh, Ih is the identity operator and ω is
a relaxation parameter.

3.2. Zebra-type smoothers
For triangular grids, three different zebra smoothers can be defined on a triangle as shown in
Figure 4. They consist of two half steps. In the first half-step, odd lines parallel to the edges
of the triangle are processed, whereas even lines are relaxed in the second step, in which
the updated approximations on the odd lines are used. They will be denoted as zebra-red,
zebra-black and zebra-green smoothers, since they correspond to each of the vertices of the
triangle.

In order to perform these smoothers, a splitting of the grid GT,h into two different subsets
Geven

T,h and Godd
T,h is necessary. For each of the zebra smoothers these subgrids are defined

in a different way, and the corresponding distinction between them is specified in Table 1,
where k1 and k2 are the indices of the grid points given in (2). Thus, these three smoothers
SzR

h , SzB
h and SzG

h are defined by the product of two partial operators. For example, if zebra-red
smoother is considered, SzR

h = SzR−even
h SzR−odd

h where SzR−even
h is in charge of relaxing the points

in Geven
T,h and SzR−odd

h is responsible for the points in Godd
T,h . These smoothers are preferred to the
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Figure 4: Zebra line smoothers: approximations at points marked by 1 are updated in the first
half-step of the relaxation, and those marked by 2 in the second.

Relaxation Geven
T,h Godd

T,h
Zebra-red k2 even k2 odd

Zebra-black k1 even k1 odd
Zebra-green k1 + k2 even k1 + k2 odd

Table 1: Characterization of subgrids Geven
T,h and Godd

T,h for different zebra smoothers.

lexicographic line-wise Gauss-Seidel because in spite of having the same computational cost,
smoothing factors corresponding to zebra smoothers are better than those of lexicographic
line-wise relaxations as we will see further on.

§4. Fourier analysis results

It is easy to see that L̃R,h = R L̃hRt, where L̃h and L̃R,h are the LFA symbols of the discrete
operators associated with two grids, one obtained by rotating the other. Thus, it is fulfilled
that these LFA symbols are similar and therefore LFA results obtained for these two grids
are completely identical. Due to this property it is possible to restrict the analysis to triangles
that sit on the x-axis of the Cartesian coordinate system.

This section focuses on analyzing different smoothers for the posed problem, while the
components of the coarse–grid correction are taken as the standard ones as we have men-
tioned before.

One of the proposals here is the three–color smoother. In order to support the choice of
this smoother as a good option for some geometries, some results obtained comparing it with
the point-wise Gauss-Seidel are presented. For an equilateral triangle, these results appear in
Table 2, where their two–grid convergence factors ρ and also the experimentally measured
W–cycle convergence factors, denoted by ρh and obtained with a zero right-hand side and
a random initial guess, are shown in order to observe that convergence factors are very well
predicted by LFA. It can be observed that three-color smoother provides the best convergence
factors between the two smoothers.

However, the three–color smoother is not robust over all angles, that is, the highly satis-
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Gauss–Seidel Three–color smoother
ν1, ν2 ρ(ν1, ν2) ρh(ν1, ν2) ρ(ν1, ν2) ρh(ν1, ν2)
1, 0 0.516 0.506 0.422 0.422
1, 1 0.257 0.255 0.173 0.172
2, 1 0.172 0.172 0.097 0.095
2, 2 0.113 0.113 0.073 0.072

Table 2: Two–grid convergence factors ρ and measured W–cycle convergence rates ρh for
equilateral triangles.

Equilateral Isosceles (75o) Isosceles (85o)
ν1, ν2 µν1+ν2 ρ(ν1, ν2) µν1+ν2 ρ(ν1, ν2) µν1+ν2 ρ(ν1, ν2)
1, 0 0.503 0.422 0.811 0.814 0.976 0.977
1, 1 0.253 0.173 0.657 0.661 0.954 0.955
2, 1 0.127 0.097 0.533 0.536 0.932 0.934
2, 2 0.064 0.073 0.432 0.435 0.911 0.913

Table 3: LFA smoothing and two–grid factors for different triangles with three-color
smoother.

factory factors obtained for equilateral triangles worsen when one of the angles of the triangle
is small. This behavior can be seen in Table 3, where smoothing and two-grid factors obtained
with this smoother are shown for some representative triangles.

To overcome this difficulty, three zebra-type smoothers, associated with the three vertices
of the triangle, are proposed. These zebra–type smoothers are preferred to the lexicographic
block–line Gauss–Seidel smoothers because, despite having the same computational cost,
they are more suitable for parallel implementation and their two-grid convergence factors are
better, as we can see in Table 4 for an isosceles triangle with common angle 85o. Each of
these zebra–type smoothers is highly efficient when the angle corresponding to the vertex of
its color is sufficiently small. This is shown in Table 5, where smoothing and two-grid factors
for some representative triangles are shown.

As a final remark, it is observed that, depending on the geometry of the triangles, it
is possible to improve the convergence factors of three-color and zebra-type smoothers by
means of a relaxation parameter, whereas for the point-wise Gauss-Seidel and lexicographic
line-wise smoothers there is no improvement. For instance, in the case of equilateral triangles
the obtained convergence factor for three-color smoother is about 0.422 for ν1 = 1, ν2 = 0,
and it can enhance to 0.303 taking a damping parameter ω = 1.1.

§5. Conclusions

A Local Fourier Analysis for multigrid methods on triangular grids for the problem of planar
elasticity has been presented. Analogously to the scalar case, the key point of this analysis is
to introduce an expression of the Fourier transform in new coordinate systems, both in space
and in frequency variables, associated with reciprocal bases. This analysis makes highly
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Lexicographic line-wise smoother Zebra–type smoother
ν1, ν2 ρ(ν1, ν2) ρh(ν1, ν2) ρ(ν1, ν2) ρh(ν1, ν2)
1, 0 0.333 0.331 0.143 0.142
1, 1 0.151 0.145 0.071 0.069
2, 1 0.094 0.094 0.047 0.046
2, 2 0.063 0.062 0.036 0.034

Table 4: LFA two–grid convergence factors and measured W–cycle convergence rates ρh for
isosceles triangles with common angle 85o.

Equilateral Isosceles (75o) Isosceles (85o)
ν1, ν2 µν1+ν2 ρ(ν1, ν2) µν1+ν2 ρ(ν1, ν2) µν1+ν2 ρ(ν1, ν2)
1, 0 0.535 0.404 0.387 0.165 0.265 0.143
1, 1 0.226 0.164 0.096 0.072 0.053 0.071
2, 1 0.104 0.088 0.034 0.047 0.034 0.047
2, 2 0.049 0.067 0.025 0.035 0.025 0.036

Table 5: LFA smoothing and two–grid factors for equilateral and isosceles triangles with
zebra–type smoother.

accurate predictions of the performance of a multigrid algorithm and as a consequence, also
the choice of the adequate components of the method for a given problem. In this paper
LFA has been applied to study the planar elasticity system, and with the help of this analysis
a three-color smoother and some zebra-type smoothers are proposed to obtain an efficient
multigrid algorithm to solve this problem.
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