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ON THE HYDROSTATIC
STOKES APPROXIMATION

WITH NON HOMOGENEOUS
DIRICHLET CONDITIONS
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Abstract. We deal with the hydrostatic Stokes approximation with non homogeneous
Dirichlet boundary conditions. While investigated the homogeneous case, we build a
shifting operator of boundary values related to the divergence operator, and solve the non
homogeneous problem in a domain with sidewalls.
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§1. Introduction

Let us consider Ω ⊂ R3 a bounded domain defined by

Ω =
{

x = (x′, x3) ∈ R3 | x′ ∈ ω and − h(x′) < x3 < 0
}
, (1)

where ω ⊂ R2 is a bounded Lipschitz-continuous domain and h, defined in ω, is a mapping
satisfying the following assumption.

Assumption 1. The mapping h is positive and Lipschitz-continuous on ω. Besides, there is
a constant α > 0 such that

inf
x′∈ω

h(x′) > α. (2)

Therefore, Ω has a Lipschitz-continuous boundary Γ splitted into three parts, each one
with a positive measure: the surface ΓS , the bottom ΓB , and sidewalls ΓL, defined by:

ΓS = ω × {0} , ΓB =
{
(x′,−h(x′)) | x′ ∈ ω

}
,

ΓL =
{

x ∈ R3 | x′ ∈ ∂ω and − h(x′) < x3 < 0
}
.

Finally, we denote by n the unit external vector normal to Γ. Below, the drawing of the
domain Ω.

Let f ′ = ( f1, f2) : Ω → R2, Φ : Ω → R, and g = (g′, g3) : Γ → R3 be given functions,
Φ and g satisfying adequate compatibility conditions (see (7)). In this paper, we study the
hydrostatic Stokes approximation consisting in seeking u : Ω→ R3 and p : ω→ R

(SH)
−∆u′ + ∇′p = f ′, ∂3 p = 0, ∇ · u = Φ in Ω,

u′ = g′, u3n3 = g3 on Γ.
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Here ∇′ = (∂x1 , ∂x2 ) denotes the gradient operator with respect to the variables x1 and x2.
When Φ and g3 are identically equal to 0, some authors have considered (SH) as a re-

duced Stokes-type system. Indeed, let us consider the case of homogeneous conditions. The
simplifications of (SH) come from the hydrostatic pressure hypothesis:

∂p
∂x3

= 0 in Ω, (3)

ensuring that pS , the pressure at x3 = 0, is in fact the real unknown. Moreover, by integrating
with respect to x3 the incompressibility equation:

∇ · u = 0 in Ω, (4)

and taking into account the boundary conditions over u3, it appears that the vertical velocity
u3 is given by the horizontal velocity u′. In this case, the equations of (SH) can be reduced
to the following system: 

−∆u′ + ∇′pS = f ′ in Ω,

∇′ ·

∫ 0

−h(x′)
u′(x′, x3) dx3 = 0 in ω,

u′ = 0 on Γ.

(5)

Then, we get back to u3 and the global pressure p by setting

x ∈ Ω, u3(x) =
∫ 0

x3
∇′ · u′(x′, ξ) dξ, p(x) = pS (x′). (6)

However, studying (5) yields real difficulties when the mapping h vanishes on ∂ω. Previous
works dealing with (5) use assumption (2). Weak solutions to (5) was investigated in [5, 4].
Results of [5, 4] are then reviewed in [3], where the author deals with some models close to
(5).

The purpose of the paper is to present a proof of the following thoerem, in a simplified
case. The complete proof is given in [1]. Before, we introduce the space

X = H1(Ω)2 × H(∂x3 ,Ω),

and its hilbertian norm ‖u‖X =
(
‖u′‖2H1(Ω)2 + ‖u3‖

2
H(∂x3 ,Ω)

)1/2
, where H(∂x3 ,Ω) is defined in

Subsection 2.2.
Theorem 2. Assume assumption (2). Let f ′ ∈ H−1(Ω)2, Φ ∈ L2(Ω), g′ ∈ H1/2(Γ)2 and
g3 ∈ L2(Γ) such that g3 = 0 on ΓL, and satisfying the following compatibility condition:∫

Γ

g′ · n′ dσ +

∫
Γ

g3 dσ =

∫
Ω

Φ dx. (7)

Then, there is a unique pair (u, p) ∈ X× (L2(Ω)/R) solution to Problem (SH) and satisfying
the estimate,

‖u‖X + ‖p‖L2(Ω)/R 6 C
{
‖ f ′‖H−1(Ω)2 + ‖Φ‖L2(Ω) + ‖g′‖H1/2(Γ)2 + ‖g3‖L2(Γ)

}
, (8)

where C > 0 is a constant depending only on Ω.



On the hydrostatic Stokes approximation with non homogeneous Dirichlet conditions 119

The outline of the paper is as follows. In Section 2 we set the appropriate functional
framework. In particular, we recall the definition and structure of the anisotropic space
H(∂x3 ,Ω), which is the adapted space for u3. Moreover, we introduce the usual integra-
tion operators M and F (see (14) and (15)), useful in our study, to provide an adapted lemma
of De Rham (see Lemma 7). Finally, we prove Theorem 2 in Section 3.

§2. Functional framework

We assume the reader to be familiar with the classical notations and properties of Lebesgue
and Sobolev spaces on a regular open set.

2.1. Computations of surface integrals
For any function µ : Γ→ R, we define the functions µS or (µ)S and µB or (µ)B by setting

x′ ∈ ω, µS (x′) = µ(x′, 0), µB(x′) = µ(x′,−h(x′)).

We start with an important tool which enables us to replace any integrals defined on ΓS and
ΓB by one defined on ω.
Lemma 3. The mapping µ 7→ (µS , µB) is linear and continuous from L2(Γ) into L2(ω)2.
Moreover, one has by definition of the measure dσ:∫

ΓS

µ dσ =

∫
ω

µS dx′ and
∫

ΓB

µ dσ =

∫
ω

µB

√
1 + |∇h|2dx′. (9)

Proof. This result follows from straightforward calculating. �

Remark 1. Notice that the integrals in (9) are well defined since ω is bounded. Next, the third
component of the normal n3 satisfies n3 = 1 on ΓS , n3 = 0 on ΓL and (n3)B(1 + |∇h|2)1/2 = −1
on ω. Moreover, (ni)B(1 + |∇h|2)1/2 = −∂xi h in ω. Therefore,

∀µ ∈ L2(Γ),
∫

Γ

µn3 dσ =

∫
ω

µS dx′ −
∫
ω

µB dx′. (10)∫
ΓB

µni dσ = −

∫
ω

µ
∂h
∂xi

dx′. (11)

2.2. The anisotropic space H(∂x3 ,Ω)

Let us recall here some useful results that can be found in [6]. Set

H(∂x3 ,Ω) =
{

u ∈ L2(Ω)
∣∣∣∣ ∂u
∂x3
∈ L2(Ω)

}
,

which is a Hilbert space endowed with norm ‖u‖H(∂x3 ,Ω) =

(
‖u‖2L2(Ω) +

∥∥∥∂x3 u
∥∥∥2

L2(Ω)

)1/2
. For any

u ∈ H(∂x3 ,Ω), we have un3 ∈ H−1/2(Γ). Then, setting

H0(∂x3 ,Ω) =
{

u ∈ L2(Ω)
∣∣∣∣ ∂u
∂x3
∈ L2(Ω) and un3 = 0

}
,
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the following Green’s formula holds

∀u ∈ H(∂x3 ,Ω), ∀v ∈ H0(∂x3 ,Ω),
∫

Ω

u
∂v

∂x3
dx = −

∫
Ω

v
∂u
∂x3

dx, (12)

as well as the Poincaré’s Inequality

∀u ∈ H0(∂x3 ,Ω), ‖u‖L2(Ω) 6 ‖h‖L∞(ω)

∥∥∥∥∥ ∂u
∂x3

∥∥∥∥∥
L2(Ω)

. (13)

2.3. Definition and properties of the operators M and F.
Let u be a function defined in Ω. We consider the following operators

x′ ∈ ω, Mu(x′) =

∫ 0

−h(x′)
u(x′, x3) dx3, (14)

x = (x′, x3) ∈ Ω, Fu(x) =

∫ 0

x3

u(x′, ξ) dξ, Gu(x) =

∫ x3

−h(x′)
u(x′, ξ) dξ. (15)

Proposition 4. The operator M is linear and continuous from L2(Ω) into L2(ω), and from
H1(Ω) into H1(ω). Then, one has for i = 1, 2:

∀u ∈ H1(Ω),
∂

∂xi
(Mu) = M

( ∂u
∂xi

)
+
∂h
∂xi

uB in ω; (16)

∀u ∈ H1
0(Ω),

∂

∂xi
(Mu) = M

( ∂u
∂xi

)
in ω. (17)

Moreover, the following relation holds:

∀u ∈ H0(∂x3 ,Ω), M
( ∂u
∂x3

)
= 0 in ω. (18)

Proof. Let u ∈ L2(Ω). By applying Fubini’s Theorem, we deduce that Mu ∈ L2(ω) and
‖Mu‖L2(ω) 6 ‖h‖L∞(ω) ‖u‖L2(Ω) . Therefore, the mapping M is linear and continuous from L2(Ω)
into L2(ω). Next, for u in H1(Ω) and i = 1, 2, one has for any ψ ∈ D(ω):∫

ω

Mu
∂ψ

∂xi
dx′ =

∫
Ω

u
∂ψ

∂xi
dx = −

∫
Ω

∂u
∂xi

ψ dx +

∫
Γ

uψ ni dσ.

Then, (11) gives ∫
ΓB

uψ ni dσ = −

∫
ω

uBψ
∂h
∂xi

dx′, (19)

since ψ does not depend on x3 and since ψ = 0 on ΓL. Thus∫
ω

Mu
∂ψ

∂xi
dx′ = −

∫
ω

[
M

( ∂u
∂xi

)
+ uB

∂h
∂xi

]
ψ dx′.

Thus (16) holds in D′(ω). From Proposition 3 and the fact that h is Lipschitz-continuous,
(16) holds in L2(ω). The same arguments prove that M is a linear mapping from H1(Ω) in
H1(ω). When u belongs to H1

0(Ω), the function uB vanishes on ω. Therefore, we get (17).
Finally, (18) follows from a computation using relation (12). �
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Proposition 5. The operator F is linear and continuous from L2(Ω) into L2(Ω) and G is the
adjoint operator to F. Next, the operator F is continuous from L2(Ω) into H(∂x3 ,Ω), and

∀u ∈ L2(Ω),
∂

∂x3
(Fu) = −u in Ω. (20)

Moreover, the following relation holds:

∀u ∈ H0(∂x3 ,Ω), F
( ∂u
∂x3

)
= −u in Ω. (21)

Proof. Let u ∈ L2(Ω). Thanks to Fubini’s Theorem, we deduce that Fu ∈ L2(Ω) and from
Poincaré’s Inequality we have ‖Fu‖L2(Ω) 6 ‖h‖∞ ‖u‖L2(Ω) by . Hence F is linear and continuous
from L2(Ω) into L2(Ω). Again Fubini’s Theorem ensures that

∀u, v ∈ L2(Ω),
∫

Ω

v Fu dx =

∫
Ω

u Gv dx. (22)

Next, (22) gives that for any ϕ ∈ D(Ω),∫
Ω

∂ϕ

∂x3
Fu dx =

∫
Ω

u G
( ∂ϕ
∂x3

)
dx =

∫
Ω

uϕ dx.

Hence (20) holds in D′(Ω) and ∂x3 (Fu) ∈ L2(Ω). Moreover, we deduce from above that the
operator F is continuous from L2(Ω) into H(∂x3 ,Ω). Finally, we use the same arguments as
above and relation (12) to prove (21). �

Remark 2. Let u ∈ H1(Ω) and ϕ ∈ D(Ω). Thanks to Proposition 5 and (10), one gets:∫
Ω

G(
∂u
∂x3

)ϕ dx =

∫
Ω

uϕ dx +

∫
ΓS∪ΓB

un3 Fϕ dσ

=

∫
Ω

uϕ dx +

∫
ω

uS (Fϕ)S dx′ −
∫
ω

uB(Fϕ)B dx′.

By observing that (Fϕ)S = 0 and (Fϕ)B = Mϕ in ω, one has∫
Ω

G
( ∂u
∂x3

)
ϕ dx =

∫
Ω

uϕ dx −
∫

Ω

uBϕ dx,

which provides that,

∀u ∈ H1(Ω), G
( ∂u
∂x3

)
= u − ũB in Ω. (23)

We conclude this subsection by giving additional properties on M and F. Precisely, we
prove the following relation between the operators M and F.

Proposition 6. Let u ∈ L2(Ω). Then, the following assertions are equivalent:

(i) Mu = 0 in L2(ω).

(ii) (Fu)n3 = 0 in H−1/2(Γ).
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Proof. Given u ∈ L2(Ω), Proposition 5 ensure that (Fu)n3 is in H−1/2(Γ). Next, (23) gives for
any v ∈ H1(Ω):

〈(Fu) n3, v〉H−1/2(Γ),H1/2(Γ) =

∫
Ω

∂v

∂x3
Fu dx −

∫
Ω

uv dx =

∫
Ω

u G
( ∂v
∂x3

)
dx −

∫
Ω

uv dx

=

∫
Ω

u (v − ṽB) dx −
∫

Ω

uv dx.

Therefore, one obtains a relation between F and M:

∀(u, v) ∈ L2(Ω) × H1(Ω), 〈(Fu) n3, v〉 = −

∫
ω

vB Mu dx′, (24)

which proves that (i) implies (ii). Conversely, for any ψ in D(ω) and applying (24) with
v = ψ, we get ∫

ω

ψMu dx′ =

∫
ω

vB Mu dx′ = − 〈(Fu) n3, v〉 = 0.

Then (ii) implies (i): this completes the proof of Proposition 6. �

2.4. Some properties related to the mean divergence operator

For any vector field u = (v1, v2, v3), we define

∇′ · Mu′ =
∑
i=1,2

∂xi (Mui),

and the corresponding space VM =
{
u′ ∈ H1

0(Ω)2 | ∇′ · Mu′ = 0 in ω
}
.

Lemma 7. If f ′ ∈ H−1(Ω)2 satisfies

∀u′ ∈ VM ,
〈

f ′, u′
〉

H−1(Ω)2,H1
0 (Ω)2 = 0,

then, there is q ∈ L2(ω)/R such that ∇′q̃ = f ′ in Ω. Moreover, there is a constant C > 0
depending only on Ω such that

‖q‖L2(ω)/R 6 C ‖∇q̃‖H−1(Ω) . (25)

Proof. Let us set f = ( f ′, 0). Let u ∈ H1
0(Ω)3 such that ∇· u = 0. Thanks to (17) and (18) one

has u′ ∈ VM . Therefore, using results from [2] from pages 22-25, there is a unique function
p in L2(Ω)/R such that ∇p = f . Then, since ∂x3 p = 0 in Ω, there is q ∈ L2(ω)/R, such that
p = q̃ in Ω. Thus q satisfies ∇′q̃ = f ′ in Ω. �
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§3. Resolution of Problem (SH) with homogeneous Dirichlet conditions

Proposition 8. Let f ′ ∈ L2(Ω)2 and assume that Φ and g are identically equal to 0. Then,
Problem (SH) has a at least solution (u, p) in the space X × (L2(Ω)/R).

Proof. Let us consider the solution (u, p) related to the data f ′ = 0. We multiply the first
equation of (SH) by u′. Then, using (12) and since ∇ · u = 0 and ∂x3 p = 0 in Ω, one has∫

Ω

∇u′ : ∇u′ dx =

∫
Ω

p∇′ · u′ dx = −

∫
Ω

p
∂u3

∂x3
dx =

∫
Ω

u3
∂p
∂x3

dx = 0.

Therefore ∇u′ = 0 in Ω and, since Ω is connected, u′ = 0 in Ω. As ∇ · u = 0 in Ω, we
deduce that ∂x3 u3 = 0 in Ω, and from the inequality (13) we get u3 = 0 in Ω. Next, since
∇′p = ∆u′ = 0 in Ω, one obtains that ∇p = 0 in Ω, hence p = 0 in Ω. Finally, the solution
related to the data f ′ = 0 is u = 0 and p = 0, which proves that Problem (SH) has at least
one solution in X × (L2(Ω)/R). �

Theorem 9. Let f ′ in H−1(Ω)2 and assume that Φ and g are identically equal to 0. Then,
Problem (SH) has a unique solution (u, p) in the space X × (L2(Ω)/R). Moreover, there is a
constant C > 0 such that

‖u′‖H1(Ω)2 + ‖u3‖H(∂x3 ,Ω) + ‖p‖L2(Ω)/R 6 C‖ f ′‖H−1(Ω)2 . (26)

To prove Theorem 9, we need Lemma 7 and the proposition stated below.

Lemma 10. Let u = (u′, u3) with u′ in H1
0(Ω)2 and u3 in H(∂x3 ,Ω). Then the following

assertions are equivalent

(i) ∇ · u = 0 in Ω, u3n3 = 0 in H−1/2(Γ).

(ii) ∇′ · (Mu′) = 0 in ω, u3 = F(∇′ · u′) in Ω.

Proof. Assume that (i) holds. Then, (18) and (21) yield

M(∇′ · u′) = 0 and u3 = F(∇′ · u′).

Moreover, thanks to (17) one has M(∇′ · u′) = ∇′ ·Mu′, from which follows (ii). Conversely,
one has by (20), ∇ · u = 0. Since M(∇′ · u′) = 0, Proposition 6 ensures that n3F(∇′ · u′) = 0
in H−1/2(Γ). Hence u3n3 = 0 in H−1/2(Γ). �

From Lemma 10 and the fact that p does not depend on x3, solving Problem (SH) reduces
to solve the following problem:

Find (u′, pS ) ∈ H1
0(Ω)2 × (L2(ω)/R) such that:

−∆u′ + ∇′pS = f ′ in Ω,

∇′ · Mu′ = 0 in ω,
u′ = 0 on Γ.

(27)

We get back to p and u3 thanks to (6). The existence and uniqueness of the solution to (27)
is given by the following proposition.
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Proposition 11. Let f ′ in H−1(Ω)2. There is a unique solution (u′, pS ) in the space H1
0(Ω)2×

(L2(ω)/R) to Problem (27). Moreover, there is a constant C > 0 such that

‖u′‖H1(Ω)2 + ‖pS ‖L2(ω)/R 6 C ‖ f ′‖H−1(Ω)2 . (28)

Proof. Any solution (u′, pS ) in the space H1
0(Ω)2 × (L2(ω)/R) satisfies the following varia-

tional formulation:

∀u′ ∈ VM ,

∫
Ω

∇u′ : ∇u′ dx =
〈

f ′, u′
〉

H−1(Ω)2,H1
0 (Ω)2 . (29)

Conversely, any solution u′ ∈ VM to (29) is such that

∀u′ ∈ VM ,
〈
−∆u′ − f ′, u′

〉
H−1(Ω)2,H1

0 (Ω)2 = 0.

Therefore, Lemma 7 provides a unique pS in (L2(ω)/R) such that (u′, pS ) is a solution to (27).
Then, by Lax-Milgram’s lemma, there is a unique u′ in VM satisfying (29) and ‖∇u′‖L2(Ω) 6
C‖ f ′‖H−1(Ω)2 , hence ‖u′‖H1(Ω)2 6 C ‖ f ′‖H−1(Ω)2 by Poincaré’s Inequality, where C > 0 denotes
is a constant depending only on Ω. To finish, we deduce (28) from (25) since

‖pS ‖L2(ω)/R 6 C
∥∥∥∇p̃S

∥∥∥
L2(Ω) 6 C‖ f ′‖H−1(Ω)2 . �

Thanks to Proposition 11 and Lemma 10, (SH) admits a unique solution (u, p) ∈ X ×
(L2(Ω)/R). Combining results from Proposition 11 and Proposition 5, we get (8). This
complete the proof of Theorem 8.
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