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OPTIMAL BASES OF SPACES
WITH TRIGONOMETRIC FUNCTIONS

J. M. Carnicer, E. Mainar and J. M. Peña
Abstract. The normalized B-basis of a space has optimal shape preserving properties. We
present a procedure to construct the normalized B-basis. We illustrate this construction
in the space T̄1/2 generated by 1, t, cos t, sin t, cos(t/2), sin(t/2). This space can be used
to represent exactly the following remarkable curves: complete cycloidal arcs, cardioids,
deltoids and Descartes’ trifolium.
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§1. Introduction

The Bernstein basis is optimal among all other shape preserving bases of the space of poly-
nomials of degree not greater than n on a given compact interval [1]. Roughly speaking,
this means that the curve represented by this basis is closer to its control polygon than with
other kinds of representations for polynomial curves. In [2] it was proved that each space of
functions admitting shape preserving representations (in the sense of [5]) always has an opti-
mal shape preserving basis called the normalized B-basis. For polynomial curves, the shape
preserving representations exist on intervals of any length. However, for more general spaces
interesting in curve design, it is not clear whether there exist shape preserving representations
on a given interval (see [6]). In the last years, a growing interest in the design of curves in
spaces mixing algebraic, trigonometric and hyperbolic functions has arisen.

It is desirable to represent motions of objects with its natural velocity, which eliminates
the freedom in the parameterization. In particular, in order to obtain uniform circular motions,
it is necessary to represent a circle with its arc length parameterization. It is also convenient
that all types of curves which have to be used in the design process can be obtained with the
same kind of representation. This may imply to use a representation of curves in a computer
graphics system working simultaneously with algebraic and transcendent curves.

In [4] we have found all six dimensional spaces invariant under translations and reflec-
tions containing the first degree polynomials and the trigonometric functions cos t, sin t and
admitting shape preserving representations on the interval [0, 2π] (this implies that a com-
plete circular arc can be represented using a single control polygon). Among these spaces,
we find spaces mixing trigonometric functions with two angular frequencies

T̄w B 〈1, t, cos t, sin t, cos(wt), sin(wt)〉, 0 < w < 1.

We have chosen the space T̄1/2 to show how to obtain the optimal bases. This space allows us
to represent exactly not only circles but also complete cycloidal arcs, cardioids, deltoids and
Descartes’ trifolium among other remarkable curves.
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Section 2 presents the procedure to obtain the normalized B-basis of a space. Section 3 is
devoted to the construction of the normalized B-basis of the space T̄1/2 and the obtention of
control polygons for the representation of remarkable curves.

§2. Construction of the optimal shape preserving basis

Let us recall that an extended Chebyshev space of functions F defined on an interval I is a
space such that each nonzero function of F has at most dim F − 1 zeros (counting multiplic-
ities) in I. In order to check the existence of normalized B-bases, we shall use Theorem 4.1
of [3] restated below.

Theorem 1. Let F be an (n + 1)-dimensional subspace of Cn[a, b] such that 1 ∈ F. Then F
is an extended Chebyshev space with a normalized B-basis on [a, b] if and only if the space
of the derivatives

F′ B { f ′ | f ∈ F}

is an extended Chebyshev space.

Assuming that we have shown the existence of a normalized B-basis, we may proceed to
its construction. First we construct a B-basis following the method suggested in Remark 2.3
and Theorem 2.4 of [3] and then, we shall normalize it following Remark 4.1 of [3]. Let us
describe the steps of this construction.
Step 1. We start with a basis such (u0, . . . , un) such that the wronskian matrix at the left end
of the interval

W(u0, . . . , un)(a) =


u0(a) u1(a) · · · un(a)
u′0(a) u′1(a) · · · u′n(a)
...

...
. . .

...

u(n)
0 (a) u(n)

1 (a) · · · u(n)
n (a)


is a lower triangular matrix with nonzero diagonal entries.
Step 2. We compute W(un, . . . , u0)(b), the wronskian matrix of the basis (un, . . . , u0), where
the ordering of the functions has been reversed, at the right end of the interval and obtain
its LU factorization with L a lower triangular matrix with unit diagonal and U a nonsingular
upper triangular matrix.
Step 3. We construct the basis (b0, . . . , bn) defined by

(bn,−bn−1, . . . , (−1)nb0) B (un, un−1, . . . , u0)U−1.

This basis is a Bernstein-like basis in the sense that W(b0, . . . , bn)(a) and W(bn, . . . , b0)(b) are
lower triangular matrices.
Step 4. In order to normalize the obtained basis, we solve the linear system

L(cn, cn−1, . . . , c0)T = (1, 0, . . . , 0)T ,

and then the normalized B-basis is

(B0, . . . , Bn) B (c0b0, . . . , cnbn).
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Remark 1. Since the space is invariant under reflections we have for the functions of the
normalized B-basis

Bi(t) = Bn−i(a + b − t), t ∈ [a, b], i = 0, . . . , n.

So we only need to compute half of the basis functions Bi, 0 ≤ i ≤ n/2.

§3. Designing with two angular frequencies

This section is devoted to the design of curves in the space

T̄1/2 = 〈1, t, cos t, sin t, cos(t/2), sin(t/2)〉,

on the interval t ∈ [0, 2π]. First we shall find the optimal basis (normalized B-basis) of T̄1/2
on [0, 2π] and later we shall use it for the design of some remarkable curves.

It is a well-known fact that the space 〈1, cos s, sin s, cos(2s), sin(2s)〉 of trigonometric
polynomials of degree 2 is an extended Chebyshev space on [0, 2π), that is, any nonzero
function of the space has at most dim T̄ ′1/2 − 1 = 4 zeros (counting multiplicities).

By Theorem 1, there exists a normalized B-basis on the space T̄1/2 on [0, 2π] if and only
if the space of the derivatives

T̄ ′1/2 = 〈1, cos t, sin t, cos(t/2), sin(t/2)〉

is an extended Chebyshev space. Taking s = t/2, the space is transformed into the space of
trigonometric polynomials of degree 2 on the interval [0, π]. As mentioned above, this space
is extended Chebyshev on each interval contained in [0, 2π).

Once we have shown the existence of a normalized B-basis, we proceed to its construction
following the steps described in Section 2.

Step 1. We start with the basis (u0, . . . , u5) given by

(1, t, 1 − cos t, t − sin t, 4 −
16
3

cos(t/2) +
4
3

cos t, 3t − 8 sin(t/2) + sin t),

t ∈ [0, 2π], whose wronskian matrix at t = 0

W(u0, . . . , u5)(0) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 3/4


is lower triangular with positive diagonal entries.

Let us observe that u4(t) can be factorized as u4(t) = 8
3

(
1 − cos(t/2)

)2
.
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Step 2. We evaluate the wronskian matrix at t = 2π

W(u0, . . . , u5)(2π) =



1 2π 0 2π 32/3 6π
0 1 0 0 0 8
0 0 1 0 −8/3 0
0 0 0 1 0 −2
0 0 −1 0 5/3 0
0 0 0 −1 0 5/4


,

reverse the columns and compute the factorization, W(u5, . . . , u0)(2π) = LU obtaining

L =



1 0 0 0 0 0
4π−1/3 1 0 0 0 0

0 3π/16 1 0 0 0
−π−1/3 −1/4 2π−1 1 0 0

0 −15π/128 −5/8 3π/16 1 0
5π−1/24 5/32 −2π−1 −1 4π−1/3 1


,

U =



6π 32/3 2π 0 2π 1
0 −128π−1/9 −8/3 0 −5/3 −4π−1/3
0 0 π/2 1 5π/16 1/4
0 0 0 −2π−1 −3/8 −π−1/2
0 0 0 0 9π/128 3/32
0 0 0 0 0 −π−1/8


.

Step 3. In order to construct the basis (b0, . . . , b5) defined by

(b5,−b4, b3,−b2, b1,−b0) = (u5, u4, u3, u2, u1, u0)U−1,

we compute

U−1 =



π−1/6 1/8 0 0 −16π−1/9 −4/3
0 −9π/128 −3/8 −3π/16 −1 0
0 0 2π−1 1 −32π−1/9 −8/3
0 0 0 −π/2 −8/3 0
0 0 0 0 128π−1/9 32/3
0 0 0 0 0 −8π


.

Then we have

b5(t) B
1

6π
(
3t − 8 sin(t/2) + sin t

)
,

b4(t) B
1
8
(
3t − 8 sin(t/2) + sin t

)
−

3π
16

(
1 − cos(t/2)

)2
,

b3(t) B
2
π

(t − sin t) −
(
1 − cos(t/2)

)2
.

Step 4. Solving the system

L(c5, c4, c3, c2, c1, c0)T = (1, 0, 0, 0, 0, 0)T ,
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Figure 1: Normalized B-basis of T̄1/2 on [0, 2π].

we obtain c5 = 1, c4 = −4π−1/3, c3 = 1/4 and then the normalized B-basis (B0, . . . , B5) is
given by

B5(t) B
1

6π
(3t − 8 sin(t/2) + sin t) ,

B4(t) B
−1
6π

(3t − 8 sin(t/2) + sin t) +
1
4

(1 − cos(t/2))2 ,

B3(t) B
1

2π
(t − sin t) −

1
4

(1 − cos(t/2))2 ,

and by Remark 1, we obtain the remaining basis functions

B2(t) B B4(2π − t), B1(t) B B4(2π − t), B0(t) B B5(2π − t).

Figure 1 shows the graphs of the functions of the normalized B-basis of T̄1/2 on [0, 2π].
Now we are going to obtain control polygons of different curves. For this purpose, we

need the coefficients of some functions with respect to the normalized B-basis. The coeffi-
cients of the function t, shown in Table 1, are called the Greville abscissae and are used for
obtaining the control polygon(

0
c0

) (
3π/4

c1

) (
3π/4

c2

) (
5π/4

c3

) (
5π/4

c4

) (
2π
c5

)
of the graph of f (t) =

∑5
i=0 ciBi(t).

Table 1 contains the coefficients of the usual trigonometric functions cos t, sin t, the cy-
cloidal cosine, 1−cos t, and the cycloidal sine, t−sin t, with respect to the normalized B-basis.

Figure 2 (left) shows a circle (sin t, 1 − cos t), t ∈ [0, 2π], and its control polygon(
0
0

) (
3π/4

0

) (
3π/4

4

) (
−3π/4

4

) (
−3π/4

0

) (
0
0

)
.
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Function c0 c1 c2 c3 c4 c5

1 1 1 1 1 1 1
t 0 3π/4 3π/4 5π/4 5π/4 2π

cos t 1 1 -3 -3 1 1
sin t 0 3π/4 3π/4 −3π/4 −3π/4 0

1 − cos t 0 0 4 4 0 0
t − sin t 0 0 0 2π 2π 2π
sin(t/2) 0 3π/8 3π/8 3π/8 3π/8 0
cos(t/2) 1 1 0 0 −1 −1

(1 + cos t)/2 1 1 −1 −1 1 1

Table 1: Coefficients of relevant functions in T̄1/2
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Figure 2: Control polygon of a circle (left) and a complete cycloid arc (right) in T̄1/2

Figure 2 (right) shows the cycloid (t − sin t, 1 − cos t), t ∈ [0, 2π], and its control polygon(
0
0

) (
0
0

) (
0
4

) (
2π
4

) (
2π
0

) (
2π
0

)
.

Quadratic curves can also be represented in this space. In fact, the parabola y = x2,
x ∈ [−1, 1], can be represented in this space by the parametric curve (cos(t/2), (1 + cos t)/2),
t ∈ [0, 2π], which, in view of Table 1, has the following control polygon(

1
1

) (
1
1

) (
0
−1

) (
0
−1

) (
−1
1

) (
−1
1

)
.

Other remarkable parametric curves which can be represented in this space are

Cardioid: (a(2 cos(t/2) + 1 + cos t), a(2 sin(t/2) + sin t)),
Deltoid: (a(2 cos(t/2) + cos t), a(2 sin(t/2) − sin t)),
Trifolium: (a cos(3t/4) cos(t/4), a cos(3t/4) sin(t/4)).
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Figure 3: Cardioid, Deltoid and Trifolium
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Let us observe that these curves are defined on the parameter interval [0, 4π]. The rep-
resentation of (x(t), y(t)), t ∈ [0, 4π], x, y ∈ T̄1/2, requires two control polygons. The first
one is needed to represent the curve (x(t), y(t)), t ∈ [0, 2π], and the second one to represent
(x(t + 2π), y(t + 2π)), t ∈ [0, 2π]. Since the space T̄1/2 is invariant under translations, the
functions x(t + 2π), y(t + 2π), t ∈ [0, 2π], also belong to T̄1/2. In view of the symmetry of
these curves, x(4π − t) = x(t), y(4π − t) = −y(t), we have that the control polygon P̃0 · · · P̃5,
P̃i = (x̃i, ỹi), i = 0, . . . , 5, of the curve x(t + 2π), y(t + 2π), t ∈ [0, 2π], can be expressed in
terms of the control polygon P0 · · · P5, Pi = (xi, yi), i = 0, . . . , 5, of x(t), y(t), t ∈ [0, 2π], by

x̃i = x5−i, ỹi = −y5−i, i = 0, . . . , 5.

Figure 3 shows the cardiod (top), deltoid (middle) and Descartes’ trifolium (bottom), cor-
responding to the parameter value a = 1 and their corresponding couple of control polygons
with respect to the normalized B-basis of T̄1/2.
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