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NUMERICAL MODELLING
OF POLLUTANT TRANSPORT

A. Balaguer, E. D. Fernández-Nieto, B. Latorre and V. Martínez
Abstract. In this work we study an artificial compression technique to treat discontinu-
ities associated to linearly degenerated fields, with application to pollutant transport. The
basic idea is to introduce a new flux in order to solve a new equation where the contact
discontinuity is now a shock, travelling to the same velocity. We propose a flux-limiter
method that combines the artificial compression technique and two second order meth-
ods. This method allows to apply the artificial compression technique in all the domain,
without detecting the discontinuity jumps. We present a 2D test where the improvement
of the presented technique can be observed.
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§1. Introduction

A scalar conservation law, under certain regularity hypotheses, reduces to the partial differ-
ential equation  u(x, t)t + f (u(x, t))x = 0, (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R,
(1)

where u : R × R+ → R is the conserved variable and f : R→ R is the flux function.
The pollutant transport is associated to linearly degenerated fields. If a is the velocity of

the fluid, the pollutant concentration is the solution of the an advection equation

ut + aux = 0. (2)

In the case that a is contant, the profile of the pollutant concentration can present contact
discontinuities. The problem of the pressence of contact discontinuities is that they have a
numerical diffusion more marked that shocks present in equations with non linear flux.

Harten presents a technique to treat this type of discontinuities in the pioneering work
[3], dated in 1977 and in which some modifications of standard finite differences methods are
discussed. Latter in 1989, Harten [4] again introduced the novel concept of subcell resolution.

Recently, the artificial compression method has been employed to improve the numerical
solution of a great number of problems by using a great variety of techniques. For example,
Yang [2], Lie and Noelle [5]. A brief description of the state of the art of this subject can be
found in [1].

When the initial data of the problem has two constant states

u0(x) =

u−, x < xd,

u+, x > xd.
. (3)
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Martínez and Fernández-Nieto (see [6] and [1]) propose a procedure of artificial compression
based on a modification of the flux to obtain a better numerical approach in the jumps of the
solution. The idea is to detect the jump and to replace in this zone the linear flux in equation
(2) by a nonlinear flux, so that the analytical solution in the original equation is conserved
[6].

The objective of this work is to apply this technique to a second order scheme and to
avoid the step of detection of discontinuity jumps. In Section 2 we propose a flux-limiter
method based in the use of the compression technique and the combination of two second
order methods. This method allows us to avoid the step of detection of discontinuity jumps
and to improve the results of the second order methods. Finally, in Section 3 we present two
numerical tests.

§2. Flux-limiter upwind method with artificial compression

In this section we first present a flux-limiter method that combines the first order upwind
method with a second order one. For the second order method we present two possibili-
ties: the classical Lax-Wendroff scheme (LW in what follows) and the second order upwind
scheme (UP2 in what follows). After, we propose another scheme that uses a random combi-
nation of these two second order methods.

Numerical schemes using flux limiters can be defined by

ūn+1
j = ūn

j −
∆t
∆x

(φn
j+1/2 − φ

n
j−1/2), (4)

where
φn

j+1/2 = φ1st
j+1/2 + ϕ(r2nd

j+1/2)(φ2nd
j+1/2 − φ

1st
j+1/2). (5)

By φ1st
j+1/2 and φ2nd

j+1/2 we denote the numerical flux functions of first and second order re-
spectively at time t = tn. By ϕ(r2nd) we denote a flux limiter function, which is defined in
function of a non-dimensional quantity: r2nd. The definition of r2nd depends on the choice of
the second order method. For the first order method we consider the upwind scheme:

φ1st
j+1/2 =

f (u j) + f (u j+1)
2

−
1
2
|a j+1/2| (u j+1 − u j), (6)

where a = ∂u f . And the compressed first order method reads

φ
1st,comp
j+1/2 =

f̃ (u j) + f̃ (u j+1)
2

−
1
2

∣∣∣∂u f̃ j+1/2
∣∣∣ (u j+1 − u j), (7)

where f̃ (u) is defined by using an artificial compresion technique as follows. Following [1]
we consider the flux

f̃ (u) = au + g(u), (8)

where
g(u) = ρ(u − u−)(u − u+), (9)
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where ρ is a parameter, which is chosen to assure the dynamical consistency of the jump (see
[6] and [1]). It must verify:

ρ > 0, if u− > u+ and ρ < 0, if u− < u+. (10)

In [6] it is proved that, if we consider a numerical scheme stable under a CFL condition λ0
and if

|ρ| ≤
λ0 − |a| ∆t

∆x
∆t
∆x |u− − u+|

, (11)

then the numerical scheme is also stable for the modified flux under the same CFL condition.
For the numerical schemes that we consider in this work we have λ0 = 1.

By ∂u f̃ j+1/2 we denote the Roe average, that verifies

f̃ (u j+1) − f̃ (u j) = (∂u f̃ j+1/2)(u j+1 − u j). (12)

As we mentioned previously, we consider two different possibilities for the second order
method:

• Lax-Wendroff (LW):

φLW
j+1/2 =

f (u j) + f (u j+1)
2

−
1
2

∆t
∆x

a j+1/2
(
f (u j+1) − f (u j)

)
. (13)

For Lax-Wendroff method r2nd = rLW is defined by

rLW =

(u j − u j−1)/(u j+1 − u j), if a j+1/2 > 0,
(u j+1 − u j)/(u j − u j+1), if a j+1/2 < 0.

(14)

• Upwind second order (UP2):

φUP2
j+1/2 =

1
2

(
f (u j) + f (u j+1) −

∣∣∣a j+1/2
∣∣∣ (u j+1 − u j)

+ (1 − λa+
j−1/2)

1 + sgn(a j−1/2)
2

(
f (u j) − f (u j−1)

)
− (1 + λa−j+3/2)

1 − sgn(a j+3/2)
2

(
f (u j+2) − f (u j+1)

))
,

where a± = (a ± |a|)/2. In this case r2nd = rUP2 is defined by

rUP2 =

(u j − u j+1)/(u j−1 − u j), if a j+1/2 > 0,
(u j+1 − u j)/(u j+2 − u j+1) if a j+1/2 < 0.

(15)

Finally, we present another numerical scheme based in a combination of previous one
and the compression technique. The objective is to propose a new numerical scheme that
improves previous second order methods, by using the artificial compression proposed tech-
nique, and to omit the detection of the discontinuity jump, that is, to apply the compression
in all the domain without a conditionally jump detection.
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The numerical flux function is

φ j+1/2 = φ
1st,comp
j+1/2 + ϕ(r2nd

j+1/2)(φ2nd
j+1/2 − φ

1st,comp
j+1/2 ). (16)

By φ1st,comp
j+1/2 we denote the numerical flux function of the first order upwind method applying

the artificial compression technique (7). By φ2nd
j+1/2 we denote a second order method, for

example LW or UP2. And by ϕ(r) a flux-limiter function. For the numerical tests we have
considered the minmod flux-limiter function.

Observe that the purpose to use flux-limiters functions is to combine two methods by
applying the first order one near discontinuities and the second order one outside discontinu-
ities. So, by applying the compression technique for the first order method only, we can omit
the detection of discontinuity jumps.

Another improvement is the choice of the second order method. Instead of consider LW
or UP2, we propose a combination of them. One possibility is to define φ2nd

j+1/2 as the mean
average of LW and UP2. But in this case we must compute both fluxes. Another possibility
is to choice in each intercell j + 1/2, one of them, for example we can use a random function
to select of them. We have compared both possibilities for tests 4 and 5 and the final results
are nearly the same. Then we only show the results corresponding to the cheaper possibility,
the random choice.

The motivation to use a combination of LW and UP2 methods is illustrated in tests 1 and
2. We can observe that the results obtained by using the flux-limiter version with the LW and
the UP2 method present a symmetrical and opposite behavior near discontinuities (see for
example Figures 1(b) and 1(c)).

The artificial compression technique presented in the paper can be easily extended to 2D
domains (see [1]). Basically, the finite volume method for 2D equations is based into apply a
1D flux at each edge of the 2D control volume. In test 2, we consider the same proposed com-
bination using flux function (16), by combining the compressed first order upwind method,
the 2D LW method and the 2D UP2 method.

§3. Numerical tests

3.1. Test 1: four profiles

We consider the following problem:

ut + ux = 0, −1 ≤ x ≤ 1,

u0(x) =



e(ln 2) (x+0.7)2/0.0009, −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,

1 − |10x − 1| , 0 ≤ x ≤ 0.2,√
1 − 100(x − 0.5)2, 0.4 ≤ x ≤ 0.6,

0, otherwise.

(17)
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(a) First order, LW, upwind second order (b) LW and compressed LW

(c) Upwind second order and compressed
upwind second order

(d) LW and compressed random choice

Figure 1: Test 1, comparison of first order, compressed Lax-Wendoff, compressed upwind
second order and compressed random choice method.

We consider NX = 200 points in [−1, 1] and periodic boundary conditions. The final
time is t = 20, and by the CFL condition we set (∆t/∆x) = 0.5. In Figure 1 we compare
the results obtained with the first order upwind method (Figure 1(a)), the second order flux-
limiter version with LW scheme (Figure 1(b)), the UP2 version (Figure 1(c)) and the proposed
scheme (16), by using a random combination of LW and UP2 (Figure 1(d)). We observe that
the less diffusive method is the proposed compressed random choice method. It improves the
results for all the profiles.

3.2. Test 2: 2D test
In this subsection we consider a 2D problem, where the domain is [0, 1]×[0, 1]. We discretize
the domain in quadrangular cells, with NX = NY = 200. We consider the following problem:

ut + a(x, y) ux + b(x, y) uy = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u0(x, y) =

1, if (x, y) ∈ Ω1,

0, otherwise,

(18)

where Ω1 is defined by the points (x, y) of the circle of ratio r = 0.2 and center (0.5, 0.75),
which are external to the rectangle [0.475, 0.525] × [0.65, 1].
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(a) Upwind (b) Lax-Wendroff

(c) Upwind second order (d) Random choice

Figure 2: Test 2, t=4. (a) Upwind, (b) Flux limiter method with Lax-Wendroff, (c) Flux
limiter method with Upwding second order (d) Random choice.

The velocity field is defined by a circular champ centered in (0.5, 0.5):

a(x, y) = −2π (y − 0.5), b(x, y) = 2π (x − 0.5). (19)

Then, the test consist in a profile that is transported circularly around the center of the domain,
(0.5, 0.5). The time necessary to give a compleat turn is a period T = 1. By the CFL condition
we set (∆t/∆x) =

√
2/(4π).

In Figure 2 we present the level curves corresponding to the calculated profile at t = 4T .
Figure 2(a) corresponds to the numerical result with the first order upwind method. Figure
2(b) corresponds to the LW with flux limiter scheme. Figure 2(c) corresponds to the UP2
method. And Figure 2(d) corresponds to the proposed scheme (16) in 2D. We observe that
the proposed scheme present less diffusion in the four times presented.
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