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ASYMPTOTIC KINETIC ENERGY
CONSERVATION FOR LOW-MACH
NUMBER FLOW COMPUTATIONS

Mohamed Amara, Yann Moguen and Eric Schall

Abstract. Numerical dissipation, often used in collocated mesh schemes to enforce stabil-
ity or to avoid odd-even decoupling problem, may be undesirable, for example to compute
turbulent fluid flows in DNS or LES. Unfortunately, on the other hand, central discretiza-
tion suffers from loss of stability problems, in particular when the Reynolds number in-
creases. Therefore, an important attention has been devoted to find criteria that could
ensure the stability without any addition of non-physical dissipation into the numerical
schemes.

It appears experimentally that, for incompressible flow, the discrete kinetic energy
conservation is one of these criteria. The present study deals with (1) the asymptotic
signification of this conservation property in the incompressible limit of the compressible
flow model; (2) the conditions under which the discrete kinetic energy is conserved in the
sense previously evidenced; (3) the benefits that can be expected from this conservation
property in the computations and the numerical problems that it does not prevent.
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§1. Introduction

In the context of finite volume method, it has been proved recently in Georges et al. [1] that
central interpolations ensure the discrete kinetic energy conservation in the “incompressible
limit”, which is in fact reduced to the condition div(v) = 0 in this reference. Here, we
are aiming to extend this result in the more general case of the incompressible limit in the
asymptotic sense of this expression, that is, the limit of the compressible flow model when
the reference Mach number of the flow goes to zero. Physically, this can be interpreted as the
non-convertion of the kinetic energy into the elastic one allowing the propagation of sound
waves.

First, following Nicoud [4], a single scale continuous asymptotic analysis is employed
to precise the conditions under which the kinetic energy is conserved when the reference
Mach number of the flow goes to zero. Secondly, this conservation property is investigated at
the discretized level. Finally, few numerical experiments based on an “all-Mach” algorithm
described in Ref. [3] demonstrate that the check board decoupling problem is unfortunately
not avoided when the Mach number becomes sufficiently small before unity.
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§2. Continuous asymptotics

We claim that the “incompressible limit” of the compressible flow model should be under-
stood rather as the model obtained when the characteristic Mach number of the flow goes to
zero in the general compressible flow model, than the divergence-free velocity flow model.
In fact this latter is only a particular case of the asymptotic model. In this section, we recall
shortly the derivation of the convective space and time scale continuous asymptotics, and few
basic properties of it (see e.g. Ref. [2] for further details).

The Euler equations are written in dimensional form as

∂t̂%̂ + ˆdiv(%̂v̂) = 0,

∂t̂(%̂v̂) + ˆdiv(%̂v̂ ⊗ v̂) + ∇̂ p̂ = 0,

∂t̂(%̂Ê) + ˆdiv(%̂v̂Ĥ) = 0,

Ê = ê + K̂,

%̂Ĥ = %̂Ê + p̂,

%̂ê =
p̂

γ − 1
,

where %̂, v̂, p̂, ê, Ê, Ĥ and γ denote the density, velocity, pressure, internal energy, total
energy, total enthalpy and the ratio of the specific heats at constant pressure and constant
volume, respectively. The kinetic energy is %̂K̂ with

K̂ =
v̂ · v̂

2
.

Let us suppose that the following reference quantities are given: length l̂r, density %̂r,
pressure p̂r and norm velocity v̂r. Then, non-dimensional quantities are defined, x = x̂/l̂r,
v = v̂/v̂r, p = p̂/ p̂r, % = %̂/%̂r, t = t̂/(l̂r/v̂r), E = Ê/( p̂r/%̂r), e = ê/( p̂r/%̂r) and H = Ĥ/( p̂r/%̂r).
In the following, ∇ and div denote the gradient and the divergence operators with respect to
the non-dimensionalized spatial variable x. The non-dimensional Euler equations read:

∂t% + div(%v) = 0,

∂t(%v) + div(%v ⊗ v) +
1

M2 ∇p = 0, (1)

∂t(%E) + div(%vH) = 0, (2)

E = e + M2K, (3)
%H = %E + p, (4)

%e =
p

γ − 1
, (5)

where we set

M =
√
γ

v̂r√
γ p̂r/%̂r

, K =
v · v

2
.
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By taking the scalar product of the velocity with the momentum equation (1), one obtains the
transport equation of the kinetic energy

∂t(%K) + div(v%K) =
1

M2 (p div(v) − div(pv)). (6)

Next, let us suppose that

p(x, t,M) =

N∑
n=0

Mn p(n)(x, t) + o(MN), N = 0, 1, 2, M→ 0,

with similar expansions for % and v. Then, these expansions are substituted into the non-
dimensional Euler equations. From the momentum equation, collecting coefficients of powers
−2 and −1 in the characteristic Mach number M,

p(0) = p(0)(t), p(1) = p(1)(t). (7)

This means that, at convective space and time scale, the spatial pressure variations are taken
into account by the second-order pressure p(2), called the hydrodynamic pressure. Now, from
Eqs. (3), (5) and (7),

∂t(%E) =
1

γ − 1
dt p(0) + o(M), M→ 0. (8)

Consequently, energy equation (2) leads to

dt p(0) + γp(0) div(v(0)) = 0. (9)

On the other hand, from Eq. (6), the zeroth-order transport equation of the kinetic energy
reads, after integration over the computational domain Ω,

−

∫
∂Ω

p(2)v(0) · n = ∂t

∫
Ω

%(0)K(0) +

∫
∂Ω

%(0)K(0)v(0) · n −
∫

Ω

p(2) div(v(0)). (10)

Consequently, a sufficient condition for the kinetic energy conservation in the incompressible
limit (asymptotically) is that the zeroth-order velocity field is divergence-free. Let us notice
that, from Eqs. (8) and (9), this condition is equivalent to

dt(%E)(0) = 0 or dt p(0) = 0.

In this case the zeroth-order pressure of the flow is constant in time and space. In fact, p(0)

(called the thermodynamical pressure) is related to the adiabatic compression of the gas flow,
because it verifies:

Dt log %(0) = dt log
(
p(0))1/γ

, Dt ≡ ∂t + v(0) · ∇.

If p(0) is constant, then the power of the hydrodynamic pressure forces on the boundary of the
computational domain equals the time variation of the the zeroth-order kinetic energy, plus its
injection or evacuation by the boundary. This is the significance of the kinetic energy conser-
vation in the incompressible limit, given by Eq. (10) through the analysis of the continuous
flow model.
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§3. Semi-discrete asymptotics

Let us now consider the discretized counterpart of the continuous property of kinetic energy
conservation in the incompressible limit. We are aiming to conserve this property after ap-
plying the discretization procedure, when a first-order cell centered finite-volume method is
used. We follow the presentation of Georges et al. [1], but here we adopt an asymptotic point
of view. As in the continuous case, the convective time and space scale is considered.

Let Vh ⊂ Ω a polygonal bounded domain in Rd (d = 1, 2 or 3), which consists of cells Vi

such that
Vh =

⋃
i

Vi ;
∣∣∣Vi ∩ V j

∣∣∣ = 0, i , j.

S i j is the surface (if d = 3), the edge (if d = 2) or the point (if d = 1) between two adjacent
cells Vi and V j.

Let us first introduce the asymptotic semi-discrete continuity operator. On each cell Vi,
the semi-discrete zeroth-order mass equation reads:

|Vi| dt%
(0) +

∑
S i j

(%v)(0)
i j · ni j

∣∣∣S i j

∣∣∣ = 0,

where ni j denotes the Vi unit outer normal on S i j. Here, mass fluxes, pressures and velocities
are centrally interpolated. Thus, the asymptotic semi-discrete Continuity operator is defined
on the cell Vi by

Ci = |Vi| dt%
(0)
i +

∑
S i j

FC
i j, FC

i j =
(%v)(0)

i + (%v)(0)
j

2
· ni j

∣∣∣S i j

∣∣∣ .
Let us now consider the zeroth-order semi-discrete momentum equation, the kth component
of which reads

|Vi| dt(%
(0)
i u(0)

i ) +
∑
S i j

(%v)(0)
i j · ni ju

(0)
i j

∣∣∣S i j

∣∣∣ +
∑
S i j

p(2)
i j nk

i j

∣∣∣S i j

∣∣∣ = 0, (11)

where we note u ≡ vk for convenience. As a generalization of the two first terms of the
left-hand side of Eq. (11), we set

D(φ)i = |Vi| dt(%
(0)
i φ(0)

i ) +
∑
S i j

FD
i j(φ), FD

i j(φ) =
(%v)(0)

i + (%v)(0)
j

2
· ni j

φ(0)
i + φ(0)

j

2

∣∣∣S i j

∣∣∣ ,
where φ is a scalar field on Vh, constant on each cell Vi. It is called the Divergence operator.
Let us also introduce the Advection operator,

A(φ)i = |Vi| %
(0)
i dtφ

(0)
i +

∑
S i j

FA
i j(φ), FA

i j(φ) =
(%v)(0)

i + %v)(0)
j

2
· ni j

φ(0)
j − φ

(0)
i

2
|S i j|,

and the Skew-symmetric operator,

S(φ)i =
1
2

(D(φ)i + A(φ)i) .
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A simple calculus leads to

S(φ)i =
|Vi|

2

(
dt(%

(0)
i φ(0)

i ) + %(0)
i dtφ

(0)
i

)
+

∑
S i j

FS
i j(φ), FS

i j(φ) =
(%v)(0)

i + (%v)(0)
j

2
· ni j

φ(0)
j

2

∣∣∣S i j

∣∣∣ .
Moreover, as

D(φ)i = S(φ)i +
φ(0)

i

2
Ci,

Eq. (11) yields ∑
i

u(0)
i S(u(0))i +

u(0)
i

2
Ci + u(0)

i

∑
S i j

F p
i j

 = 0, (12)

where

F p
i j =

p(2)
i + p(2)

j

2
nk

i j

∣∣∣S i j

∣∣∣ .
It is worthwhile to notice that

φ(0)
i S(φ)i = |Vi| dt

%(0)
i (φ(0)

i )2

2

 +
∑
S i j

FKS
i j (φ),

where

FKS
i j (φ) =

(%v)(0)
i + (%v)(0)

j

2
· ni j

φ(0)
i φ(0)

j

2

∣∣∣S i j

∣∣∣ .
Thus, Eq. (12) becomes

∑
i

|Vi| dt

%(0)
i (u(0)

i )2

2

 +
∑
S i j

FKS
i j (u) +

u(0)
i

2
Ci + u(0)

i

∑
S i j

F p
i j

 = 0. (13)

Focusing on the last terms in the brackets, let us mention that

u(0)
i

∑
S i j

F p
i j =

∑
S i j

FKp
i j (u) − p(2)

i

∑
S i j

u(0)
i + u(0)

j

2
nk

i j |S i j| + p(2)
i u(0)

i

∑
S i j

nk
i j |S i j|, (14)

where

FKp
i j (u) =

u(0)
i p(2)

j + u(0)
j p(2)

i

2
nk

i j

∣∣∣S i j

∣∣∣ .
As FKp

ji (u) = −FKp
i j (u), Eq. (13) leads to

∑
i

|Vi| dt

%(0)
i ‖v

(0)
i ‖

2

2

 − p(2)
i

∑
S i j

v(0)
i + v(0)

j

2
· ni j

∣∣∣S i j

∣∣∣ = 0, (15)

where ‖ · ‖ denotes the euclidean norm in Rd. Finally, one obtains the following result:
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Theorem 1. Consider the Euler equations discretized using a first-order cell-centered finite-
volume method. Let us assume that the thermodynamical pressure p(0) is constant in time, or
equivalently, the divergence of the zeroth-order velocity is zero at any time. Then, the discrete
kinetic energy is conserved on the whole computational domain when the Mach number goes
to zero, provided that:

1. convective terms are spatially discretized in skew-symmetric form,

2. mass fluxes, velocities and pressures are centrally interpolated at the cell interfaces.

One observes that Eq. (15) is in accordance with the original continuous form (10) of
the kinetic energy conservation equation in the incompressible limit. The numerical benefits
that can be expected from this property are carried out by the non-growth of the sum of the
square of the velocities. This contributes to ensure the stability of the time scheme without
any explicit numerical dissipation to introduce.

Unfortunately, a glance at Fig. 1 suffices to realize that check board decoupling is carried
on by central discretizations as the Mach number goes to zero. For this computation, an
algorithm suggested by Nerinckx et al. [3] is used. In predictor/corrector form, it is based on
the energy equation at the correction step, and enables one the proper handling of the pressure
field. This one plays a specific role in the progressive decoupling between the flow equations
when the Mach number goes to zero (see e.g. [2]).

A one-dimensional inviscid steady flow of perfect gas is considered in a nozzle with a
variable section. The throat Mach number is about 10−6. In Fig. 1, the asymmetry in the
check board distribution along the nozzle is due to the boundary conditions. The flow is
oriented from the left to the right. At the inlet, density and velocity are prescribed and the
pressure gradient is zero. At the outlet, the pressure is prescribed, while velocity and density
are allowing to float.

Semi-discrete asymptotic analysis enables one to explain the origin of the pressure nu-
merical oscillations. Returning to the momentum equation, one has at orders −2 (l = 0) and
−1 (l = 1): ∑

S i j

p(l)
i + p(l)

i

2
nk

i j

∣∣∣S i j

∣∣∣ = 0, l = 0, 1.

In fact, at convective time and space scale, p(1) disappears from the flow model in the in-
compressible limit (see e.g. [2]). Since at this scale the check board effect is due only to
the hydrodynamic pressure p(2), it can be removed by the addition of an explicit numerical
dissipation in the following form:

(%v)i j =
(%v)i + (%v) j

2
+ αi j(M) (pi − p j), αi j(M) = O(1/M2), M→ 0. (16)

The efficiency of this technique can be viewed in Fig. 2. Let us emphasize that, in this figure,
a steady flow with constant boundary conditions is considered. In contrast, for example
when acoustic pressure fluctuations are imposed at the outlet of the nozzle, the non-physical
coupling between pressure and velocity influences the kinetic energy. This is due to the fact
that p(1), which is identified as the acoustic pressure in the flow, is taken into account when
the numerical dissipation (16) is applied.
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Figure 1: Pressure distribution (Pa) along the nozzle. Throat Mach number: 10−6. Central
discretization without numerical dissipation.
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Figure 2: Pressure distribution (Pa) along the nozzle. Throat Mach number: 10−6. Central
discretizations with numerical dissipation.



40 Mohamed Amara, Yann Moguen and Eric Schall

§4. Conclusion

Kinetic energy conservation property in the incompressible limit was investigated at the con-
tinuous and discrete levels, through asymptotic analysis in convective time and space scale.
Central interpolation of the pressures, mass fluxes and velocities allows one to conserve the
continuous asymptotic property after applying the discretization procedure, provided that the
skew-symmetric form is adopted for the convective terms. Unfortunately, check board effect
is carried on by central interpolations. In the case of steady flows computations, a numerical
dissipation enables one to avoid it.
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