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ON THE HELICAL FLOW
OF NEWTONIAN FLUIDS INDUCED

BY TIME DEPENDENT SHEAR
W. Akhtar and M. Nazar

Abstract. The velocity field and the shear stresses corresponding to the unsteady flow of
Newtonian fluids in an infinite circular cylinder are determined by means of the Hankel
and Laplace transforms. The motion is produced by the infinite cylinder that at the initial
moment is subject to both longitudinal and rotational time dependent shear stresses.
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§1. Introduction

The study on the flow of a viscous fluid in a circular cylinder is not only of fundamental
theoretical interest but it also occurs in many applied problems. The starting solutions for
the motion of the second grade fluids due to longitudinal and torsional oscillations of a cir-
cular cylinder have been studied by Fetecau in [3]. Vieru et al [6], by means of the Laplace
transform and Cauchy’s residue theorem, have determined the starting solutions for the os-
cillating motion of a Maxwell fluid. Akhtar and Nazar [1] have studied the rotational flow of
generalized Maxwell fluids in a circular cylinder which rotates around its axis.

The aim of this paper is to study the flow of a Newtonian fluid in an infinite circular
cylinder of radius R. The motion is produced by the cylinder that at the initial moment is
subjected to longitudinal and torsional time dependent shear stresses. The exact solutions
of the problems with initial and boundary conditions are determined by means of the finite
Hankel and Laplace transforms. The solutions obtained in this paper can be used to make a
comparison between flows of Newtonian and non-Newtonian fluids.

§2. Governing equations

The Cauchy stress in an incompressible Newtonian fluid is characterized by the next consti-
tutive equation [5]:

T = −pI + µA, (1)

where −pI denotes the indeterminate spherical stress, A = L + LT is the first Rivlin Ericksen
tensor, L is the velocity gradient, µ is the dynamic viscosity, the superscript T denotes the
transpose operator.

In cylindrical coordinates (r, θ, z), the velocity of the flow is given by

v = v(r, t) = w(r, t)eθ + v(r, t)ez, (2)
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where eθ and ez are the unit vectors in the θ and z directions respectively. For such flows the
constraint of incompressibility is automatically satisfied.

Introducing (2) into constitutive equation (1), we find

τ1(r, t) = µ
∂v(r, t)
∂r

, (3)

τ2(r, t) = µ
(
∂w(r, t)
∂r

−
1
r
w(r, t)

)
, (4)

where τ1(r, t) = S rz(r, t) and τ2(r, t) = S rθ(r, t) are the shear stress which is different of zero.
The last equations together with the equations of motion leads to the governing equations [4]

∂v(r, t)
∂t

= ν
(
∂2v(r, t)
∂r2 +

1
r
∂v(r, t)
∂r

)
, r ∈ (0,R), t > 0, (5)

∂w(r, t)
∂t

= ν
(
∂2w(r, t)
∂r2 +

1
r
∂w(r, t)
∂r

−
1
r2w(r, t)

)
, r ∈ (0,R), t > 0, (6)

where ν = µ/ρ is the kinematic viscosity and ρ is the constant density of the fluid.

§3. Helical flow through an infinite circular cylinder

Let us consider an incompressible Newtonian fluid at rest in an infinite circular cylinder of
radius R. At time zero, the cylinder suddenly begins to rotate and move along its axis due
to time dependent shear stress. Owing to the shear, the fluid is gradually moved, its velocity
being given by Eq.(2) and the governing equations are (5) and (6). The appropriate initial and
boundary conditions are

v(r, 0) = 0, w(r, 0) = 0; r ∈ [0,R], (7)

τ1(R, t) = µ
∂v(R, t)
∂r

= f .t; t ≥ 0, (8)

τ2(R, t) = µ
(
∂w(R, t)
∂r

−
1
R
w(R, t)

)
= f .t; t ≥ 0. (9)

To solve this problem we shall use as in [1, 2] the Laplace and Hankel transforms.

3.1. Calculation of the velocity field
Applying the Laplace transform to Eqs. (5), (6), (8) and (9) and using Eq. (7) we obtain the
following problems with boundary conditions

qv(r, q) = ν
(
∂2v(r, q)
∂r2 +

1
r
∂v(r, q)
∂r

)
, (10)

∂v(R, q)
∂r

=
f
µq2 , (11)

qw(r, q) = ν
(
∂2w(r, q)
∂r2 +

1
r
∂w(r, q)
∂r

−
1
r2w(r, q)

)
, (12)

∂w(R, q)
∂r

−
1
R
w(R, q) =

f
µq2 , (13)
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where

v(r, q) =

∫ ∞

0
v(r, t)e−qtdt, w(r, q) =

∫ ∞

0
w(r, t)e−qtdt

are the Laplace transforms of v(r, t) and w(r, t) respectively. In the following we denote by

vH (r0n, q) =

∫ R

0
rv(r, q)J0(rr0n) dr, wH (r1n, q) =

∫ R

0
rw(r, q)J1(rr1n) dr, (14)

the finite Hankel transforms of v(r, q) and w(r, q) respectively, where J0(·) and J1(·) are the
Bessel functions of first kind of order zero and one and r0n and r1n, for n = 1, 2, 3, . . ., are the
positive roots of the transcendental equations J1(Rr) = 0 and J2(Rr) = 0 respectively.

Multiplying both sides of Eq. (10) by rJ0(rr0n), integrating with respect to r from 0 to R
and taking into account the condition (11) and the equality∫ R

0
r
[∂2v(r, q)

∂r2 +
1
r
∂v(r, q)
∂r

]
J0(rr0n) dr =

R f J0(Rr0n)
µq2 − r2

0nvH (r0n, q), (15)

we find that
vH (r0n, q) =

R f
ρ

J0(Rr0n)
1

q2(q + νr2
0n)
. (16)

Multiplying both sides of Eq. (12) by rJ1(rr1n), integrating with respect to r from 0 to R and
taking into account the condition (13) and the equality∫ R

0
r
[∂2w(r, q)

∂r2 +
1
r
∂w(r, q)
∂r

−
1
r2w(r, q)

]
J1(rr1n) dr =

R f J1(Rrn)
µq2 − r2

1nwH (r1n, q), (17)

we find that
wH (r1n, q) =

R f
ρ

J1(Rr1n)
1

q2(q + νr2
1n)
. (18)

Now, for a more suitable presentation of the final results, we rewrite Eqs. (16) and (18) in the
following equivalent forms

vH (r0n, q) = v1H (r0n, q) + v2H (r0n, q), (19)

where
v1H (r0n, q) =

R f J0(Rr0n)
r2

0n

1
µq2 , v2H (r0n, q) = −

R f J0(Rr0n)
µr2

0n

1
q(q + νr2

0n)
(20)

and
wH (r1n, q) = w1H (r1n, q) + w2H (r1n, q), (21)

where

w1H (r1n, q) =
R f J1(Rr1n)

r2
1n

1
µq2 , w2H (r1n, q) = −

R f J1(Rr1n)
µr2

1n

1
q(q + νr2

1n)
(22)

A straightforward calculus deals to the following function-Hankel transform pairs

f (r) =
f r2

2R
, fH (r0n) =

R f J0(Rr0n)
r2

0n

, g(r) =
f r3

2R2 , gH (r1n) =
R f J1(Rr1n)

r2
1n

. (23)
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The inverse Hankel transforms of the functions v2H (r0n, q) and w2H (r1n, q) are [2]

v2(r, q) =
2

R2

∞∑
n=1

J0(rr0n)
J2

0(Rr0n)
v2H (r0n, q),

w2(r, q) = −2
∞∑

n=1

r2
1nJ1(rr1n)

[(r2
1n + h2)R2 − 1]J2

1(Rr1n)
w2H (r1n, q),

(24)

where h = − 1
R .

Applying the inverse Hankel transform to Eqs. (19)-(22) and using (23) and (24) we
obtain the following form of the Laplace transforms of the functions v(r, t) and w(r, t)

v(r, q) =
f r2

2R
1
µq2 −

2 f
µR

∞∑
n=1

J0(rr0n)
r2

0nJ0(Rr0n)
1

q(q + νr2
0n)
, (25)

w(r, q) =
f r3

2R
1
µq2 −

2 f
µR

∞∑
n=1

J1(rr1n)
r2

1nJ1(Rr1n)
1

q(q + νr2
1n)
. (26)

We denote by

hi(rin, q) =
1

q + νr2
in

, i = 0, 1,

and have [2]
L−1{hi(rin, q)

}
= exp(−νr2

in).

The inverse Laplace transform of the function gi(rin, q) = 1
q hi(rin, q) is

gi(rin, t) =

∫ t

0
hi(rin, u) =

1
νr2

in

[1 − exp(−νr2
int)]. (27)

Applying inverse Laplace transform to Eqs. (25) and (26) and using (27) we find the follow-
ing forms of the velocity fields:

v(r, t) =
f r2

2µR
t −

2 f
νµR

∞∑
n=1

J0(rr0n)
r4

0nJ0(Rr0n)
[1 − exp(−νr2

0nt)], (28)

and

w(r, t) =
f r3

2µR2 t −
2 f
νµR

∞∑
n=1

J1(rr1n)
r4

1nJ1(Rr1n)
[1 − exp(−νr2

1nt)]. (29)

3.2. Calculation of the shear stresses
Applying the Laplace transform to Eqs. (3) and (4) we find that

τ1 (r, q) = µ
∂v(r, q)
∂r

, (30)

τ2 (r, q) = µ
(
∂w(r, q)
∂r

−
1
r
w(r, q)

)
. (31)
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Differentiating Eqs. (25) and (26) with respect to r we get

∂v(r, q)
∂r

=
r f
R

1
µq2 +

2 f
µR

∞∑
n=1

J1(rr0n)
r0nJ0(Rr0n)

1
q(q + νr2

0n)
, (32)

respectively

∂w(r, q)
∂r

−
1
r
w(r, q) =

f r2

R2

1
µq2 +

2 f
µR

∞∑
n=1

J2(rr1n)
r1nJ1(Rr1n)

1
q(q + νr2

1n)
. (33)

Introducing (32) into (30) and (33) into (31) we find that

τ1 (r, q) =
r f
R

1
q2 +

2 f
R

∞∑
n=1

J1(rr0n)
r0nJ0(Rr0n)

1
q(q + νr2

0n)
, (34)

τ2 (r, q) =
r2 f
R2

1
q2 +

2 f
R

∞∑
n=1

J2(rr1n)
r1nJ1(Rr1n)

1
q(q + νr2

1n)
. (35)

Inverting Eqs. (34) and (35) and using (27), we find the following forms of the shear stresses

τ1(r, t) =
r f t
R

+
2 f
νR

∞∑
n=1

J1(rr0n)
r3

0nJ0(Rr0n)
[1 − exp(−νr2

0nt)], (36)

τ2(r, t) =
r2 f t
R2 +

2 f
νR

∞∑
n=1

J2(rr1n)
r3

1nJ1(Rr1n)
[1 − exp(−νr2

1nt)]. (37)

From (36) and (37) it is easy to verify that τ1(R, t) = f t and τ2(R, t) = f t, t ≥ 0.

§4. Conclusion

In this note, the velocity field and the resulting shear stresses corresponding to the helical
flow induced by an infinite circular cylinder in an incompressible Newtonian fluid have been
determined using the finite Hankel and Laplace transforms. The motion is produced by the
cylinder that at the initial moment is subjected to both rotation and translation by time de-
pendent shear. The solutions that have been obtained satisfy all imposed initial and boundary
conditions and can be used to make a comparison between flows of Newtonian and non-
Newtonian fluids. For t → ∞, the solutions (28) and (29) reduce to the steady-state solutions

v(r, t) =
f r2

2µR
t −

2 f
νµR

∞∑
n=1

J0(rr0n)
r4

0nJ0(Rr0n)
,

and

w(r, t) =
f r3

2µR2 t −
2 f
νµR

∞∑
n=1

J1(rr1n)
r4

1nJ1(Rr1n)
.
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