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A LEAST SQUARES APPROACH FOR
AN INVERSE TRANSMISSION PROBLEM

Lekbir Afraites, Marc Dambrine and Djalil Kateb

Abstract. We consider the question of recovering the shape of an unknown inclusion ω
inside a body Ω from a single boundary measurement. This inverse problem —known
as electrical impedance tomography— is seen through the minimization of some Least
Squares criteria. We provide the first and second order derivatives with respect of per-
turbations of the shape of the interface ∂ω of the state functions and of the objectives.
We study the stability of the optimization and prove that the shape Hessian at an opti-
mal inclusion is not coercive but compact explaining the ill-posedness of the proposed
approach.
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§1. Introduction

Consider a body constant conductivity σ1 occupying a bounded domain Ω in RN with N ≥ 3.
Inside Ω, there is an unknown inclusionωwhose conductivityσ2 differs from the background
conductivity σ1 (σ1, σ2 > 0). The electrical potential u solves the partial differential equation

−div (σω(x)∇u) = 0 in Ω, (1)

with σω = σ1χΩ\ω + σ2χω. The notation χE denotes the characteristic function of a measur-
able subset E of Ω. By measuring the input voltage and the corresponding output current on
∂Ω, we gain access to a Cauchy pair ( f , g) for (1). In others words, both Dirichlet boundary
condition u = f and Neumann boundary condition σ1∂nu = g are known on ∂Ω. We consider
the question of a practical reconstruction of ω by these redundant informations on ∂Ω.

This problem is a particular case of the inverse conductivity problem of Calderón that
concerns the determination of the conductivity distribution σ from boundary measurements
([11, 9, 4]). The identification problem of an inclusion by boundary measurements is usually
written from a numerical point a view as the minimization of a cost function: typically a
Least Squares matching criterion. Many authors have investigate the steepest descent method
for this problem [7, 6, 2] with the methods of shape optimization.

We address in this manuscript the stability of the optimization problems obtained with
different Least Square cost function. By introducing second order methods, we analyze the
wellposedness of the optimization method. We explain the instability in the continuous set-
tings in terms of shape optimization: the shape Hessian is not coercive —in fact its Riesz
operator turns out to be compact— and hence the criterion to minimize does not have neces-
sarily a local strict minimum. A Kohn-Vogelius type objective is studied in [3] and simplified
models can be found in [5, 1]. In this note, we present a Least Squares approach for this
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inverse problem and obtain similar results. This fact is surprising since a Kohn-Vogelius
criteria is expected to lead to more stable optimization schemes.

The present manuscript is organized as follows. In Section 2, we reformulate the identi-
fication problem as shape optimization problems, tracking with a Least Squares formulation
the Dirichlet and Neumann boundary conditions. We precise the first and second derivative
of the state and the corresponding expressions for the criteria by introducing an adjoint state.
Finally, we present our main result: a compactness result for the shape hessian at a critical
point. In Section 3, we justify some shape derivatives and explain the main steps of the proof
for the compactness theorem that explains the ill-posedness of the underlying identification
problem.

§2. The results

Let us fix the geometrical setting under consideration and the notations. We consider a
bounded domain Ω ⊂ RN (N ≥ 3) with a C2 boundary. It is fulfilled with a material whose
conductivity is σ1, an unknown inclusion ω in Ω of conductivity σ2 , σ1. In the sequel, we
fix d0 > 0 and consider inclusions ω such that ω ⊂⊂ Ωd0 = {x ∈ Ω, d(x, ∂Ω) > d0}. We also
assume that the boundary ∂ω is of class C4,α.

In the sequel, a bold character denotes a vector. If h denotes a deformation field, it can
be written as h = hτ + hnn on ∂ω. Note also that in the following lines, n denotes the outer
normal field to ∂ω pointing into Ω \ ω. Hence, for x ∈ ∂ω, we define, when the limit exists,
u±(x) (resp. (∂nu)±(x)) as the limit of u(x ± tn(x)) (resp. 〈∇u(x ± tn(x),n(x))) when t > 0
tends to 0. Note that hτ is a vector while hn is a scalar quantity. Admissible deformation
fields have to preserve ∂Ω and the regularity of the boundaries. Therefore, we consider the
space of admissible fields

H =
{

h ∈ C4,α(RN ,RN), supp(h) ⊂ Ωd0

}
.

2.1. The shape optimization problem
In order to recover the shape of the inclusion ω, an possible strategy is to minimize a cost
function. Many choices are possible, in particular a Least Squares type objective. In this
paper, we study two different Least Square cost functions. We now define these criteria.
Fixing the Neumann boundary data, we can track Dirichlet boundary conditions:

JLS (ω) =
1
2

∫
∂Ω

|un − f |2,

where f is the disturbed boundary measurements and the un is solution of the Neumann
boundary value problem: −div (σω∇un) = 0 in Ω,

σ1∂nun = g on ∂Ω.
(2)

To obtain uniqueness of the solution of (2), we add the normalization condition∫
∂Ω

un =

∫
∂Ω

f . (3)
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Another possible choice is to fix Dirichlet boundary condition and track the outgoing flux:

JDLS (ω) =
1
2

∫
∂Ω

|σ1∂nud − g|
2,

where ud is solution of the Dirichlet boundary value problem:−div (σω∇ud) = 0 in Ω,

ud = f on ∂Ω.
(4)

To ensure that the cost function JDLS is well defined, we assume that the Dirichlet data f ∈
H3/2(∂Ω). To avoid this assumption, one usually prefers to consider JLS than JDLS .

2.2. Differentiability results for the state un and ud

We quote from [6, 10, 2] the first order derivative of the state un and ud.

Theorem 1. Let Ω be a open subset of RN with a C2 boundary and ω a subdomain in Ωd0

with a C4,α boundary. The state functions un and ud are shape differentiable and their shape
derivative u′n and u′d belong to H1(Ω \ ω) ∪ H1(ω) and satisfy



∆u′n = 0 in Ω \ ω and in ω,[
u′n

]
= hn

[σ]
σ1

∂nu−n on ∂ω,[
σ∂nu′n

]
= [σ]divτ (hn∇τun) on ∂ω,

σ1∂nu′n = 0 on ∂Ω,

and



∆u′d = 0 in Ω \ ω and in ω,[
u′d

]
= hn

[σ]
σ1

∂nu−d on ∂ω,[
σ∂nu′d

]
= [σ]divτ (hn∇τud) on ∂ω,

u′d = 0 on ∂Ω.

(5)

The second order derivative of the state functions un is computed in [3].

Theorem 2. Let Ω be a open subset of RN with a C2 boundary and ω a element of Ωd0 with
a C4,α boundary. Let h1 and h2 be two deformation fields inH . The state un is has a second
order shape derivative u′′n ∈ H1(Ω \ ω) ∪ H1(ω) that solves

∆u′′n = 0 in Ω \ ω and in ω,[
u′′n

]
=

(
h1,nh2,nH − h1τ.(Dn h2τ)

)
[∂nun] −

(
h1,n[∂n(un)′2] + h2,n[∂n(un)′1]

)
+

(
h1τ.∇h2,n + h2τ.∇h1,n

)
[∂nun] on ∂ω,[

σ∂nu′′n
]

= divτ
(
h2,n

[
σ∇τ(un)′1

]
+ h1,n

[
σ∇τ(un)′2

]
+ h1τ.(Dn h2τ)[σ∇τun]

)
− divτ

(
(h1τ.∇τh2,n + ∇τh1,n.h2τ) [σ∇τun]

)
+ divτ

(
h2,nh1,n(2Dn − HI) [σ∇τun]

)
on ∂ω,

σ1∂u′′n = 0 on ∂Ω.

(6)

Here, (un)′i denotes the first order derivative of u in the direction of hi as given in (5), Dn
stands for the second fundamental form of the manifold ∂ω and H stands for the mean cur-
vature of ∂ω. Note that H is then the sum of the main curvatures and not the scaled version
(divided by n − 1) in dimension n.
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The result concerning ud is an easy adaption of Theorem 2. Once the differentiability
of the state function has been established, the chain rule provides the differentiability with
respect to the shape of criterion.

2.3. Differentiability of the objective
As usual for Least Squares objective, this derivative can be simplified thanks to an adjoint
state denoted by wLS for JLS and wDLS for JDLS .

Theorem 3. Let Ω be a open subset of RN (N ≥ 3) with a C2 boundary and ω a element of
Ωd0 with a C4,α boundary. The Least-Square objective JLS and JDLS are differentiable with
respect to the shape and their derivatives in the direction of a deformation field h in H are
given by

DJLS (ω).h =
σ1 − σ2

σ2

∫
∂ω

(
σ1∂nw

+
LS ∂nu+

n + ∇τun.∇τwLS
)

hn,

DJDLS (ω).h = −
σ1 − σ2

σ2

∫
∂ω

(
σ1∂nw

+
DLS ∂nu+

d + ∇τud.∇τwDLS

)
hn,

where the adjoint functions wLS and wDLS solve the boundary value problem

−div (σ∇wLS ) = 0 in Ω,

σ1∂nwLS = un − f on ∂Ω,
and

−div (σ∇wDLS ) = 0 in Ω,

wDLS = σ1∂ud − g on ∂Ω,
(7)

The compatibility condition is satisfied thanks to the normalization (3). The adjoint has to be
normalized for example as in (3).

In this work, we are interested by the second order shape derivative of the cost functions
objectives and the study of the stability of these criteria. For this, will need the shape deriva-
tives of the adjoint states wLS and wDLS obtained as a consequence of Theorem 1. The state
functions wLS and wDLS are shape differentiable and their shape derivatives w′LS and w′DLS
belong to H1(Ω \ ω) ∪ H1(ω) and satisfy

∆w′LS = 0 in Ω \ ω and in ω,[
w′LS

]
= hn

[σ]
σ1

∂nw
−
LS on ∂ω,[

σ∂nw
′
LS

]
= [σ]divτ (hn∇τwLS ) on ∂ω,

σ1∂nw
′
LS = u′n on ∂Ω,

and 

∆w′DLS = 0 in Ω \ ω and in ω,[
w′DLS

]
= hn

[σ]
σ1

∂nw
−
DLS on ∂ω,[

σ∂nw
′
DLS

]
= [σ]divτ (hn∇τwDLS ) on ∂ω,

w′DLS = σ1∂nu′d on ∂Ω.

We now give the second order derivatives of the Least Square criterions JLS and JDLS :
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Theorem 4. Let Ω be a open subset of RN with a C2 boundary and ω a element of Ωd0 with
a C4,α boundary. Let h1 and h2 be two deformation fields inH . The Least Square objectives
JLS and JDLS are twice differentiable with respect to the shape and their second derivatives
in the direction h are given by

D2JLS (ω)(h,h) =

∫
∂ω

σ1∂nw
′+
LS

[
(u′n)

]
+

[
σ∂nw

′
LS

]
(u′n)− −

[
σ∂n(u′n)

]
w′−LS

+

∫
∂ω

σ2∂nw
−
LS

[
(un)′′

]
− σ1∂n(u′n)+ [

w′LS
]
− wLS

[
σ∂n(un)′′

]
,

D2JDLS (ω)(h,h) =

∫
∂ω

[
σ∂n(u′d)

]
w′−DLS + σ1∂n(u′d)+

1
[
w′DLS

]
− σ1∂nw

′−
DLS

[
(u′d)

]
+

∫
∂ω

[
(ud)′′

]
+

[
σ∂nw

′
DLS

]
(u′d)− − wDLS

[
σ∂n(ud)′′

]
− σ2∂nw

−
DLS .

(8)

Let us investigate the properties of stability of this cost functions. We focus the study
JLS cost function but we can use the same techniques for JDLS . We assume that there exists
an admissible inclusion ω∗ such that JLS (ω∗) = 0. It realizes the absolute minimum of the
criterion JLS . This is satisfied by solution of the inverse problem.Then, Euler’s equation
DJLS (ω∗)(h) = 0 holds and that we prove that

D2JLS (ω∗)(h,h) =

∫
Ω

(u′n)2. (9)

Moreover, if hn , 0, then D2JLS (ω∗)(h,h) > 0 holds. Nevertheless, (9) does not means
that the minimization problem is well posed. In fact, the following theorem explains the
instability of standard minimization algorithms.

Theorem 5. Assume that ω∗ is a critical shape of JLS for which the additional condition
un = f holds, then the Riesz operator corresponding to D2JLS (ω∗) defined from H1/2(∂ω∗)
with values in H−1/2(∂ω∗) is compact.

Theorem 5 has two main consequences. First, the shape Hessian at the global mini-
mizer is not coercive. This means that this minimizer may be no local strict minimum of the
criterion. Moreover, JLS is not locally convex (at least uniformly in the directions of defor-
mations) around the minimizer ω∗: the criterion provide no control of the distance between
the parameter ω and the target ω∗. The second consequence concerns any numerical scheme
used to obtain this optimal domain ω∗. One has to face this difficulty. This explains why
frozen Newton schemes or Levenberg-Marquard schemes are used to numerically solve this
problem [6, 2].

§3. Ideas of the proofs

3.1. Proof of Theorem 4
The differentiability of the objective is a direct application of Theorem 2. The computation
we make here is based on the relation

D2JLS (ω)(h1,h2) = D (DJLS (ω)h1) (ω)h2 − DJLS (ω)Dh1h2). (10)
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To obtain (8), we first compute the shape gradient in the direction h1, then differentiate it in
the direction of h2 to get

DJLS (ω)h1 =

∫
∂Ω

(un − f ) (un)′1.

Then,

D (DJLS (ω)h1) h2 =

∫
∂Ω

(un)′1(un)′2 + ((un)′1)′2(un − f ).

Thanks to formula (10), we obtain

D2JLS (ω)(h1,h2) =

∫
∂Ω

(un)′1(un)′2 + (un)′′1,2(un − f ). (11)

Introducing the adjoint state function wLS and the first derivative adjoint state w′LS , we trans-
form the integral on ∂Ω at integral on ∂ω thanks to Green’s formulas:∫

∂Ω

(un)′1(un)′2 =

∫
∂Ω

σ1∂nw
′
LS (un)′1

=

∫
∂ω

σ1∂n(w′LS )+ [
(un)′1

]
+ (u−n )′1

[
σ1∂nw

′
LS

]
−

[
σ∂n(un)′1

]
(w′LS )− −

[
w′LS

]
σ1∂n(u+

n )′1,∫
∂Ω

(un)′′1,2(un − f ) =

∫
∂Ω

σ1∂nwLS (un)′′1,2 =

∫
∂ω

σ2∂nw
−
LS

[
(un)′′1,2

]
− wLS

[
σ∂n(un)′′1,2

]
.

We gather these formulae to obtain the result (8).

3.2. Sketch of proof of Theorem 5
We follow the strategy of analysis of [5, 3]. We specify the domain ω that is assumed to be a
critical shape for JLS . Moreover, we assume that the additional condition un = f on ∂Ω holds,
then the adjoint state wLS = 0 in the Ω and the first derivative adjoint state w′LS becomes :−div

(
σω∇w

′
LS

)
= 0 in Ω,

σ1∂nw
′
LS = u′n on ∂Ω.

To emphasize that we deal with such a special domain, we will denote it by ω∗. The as-
sumptions mean that the measurements are compatible and that ω∗ is a global minimum of
the criterion. From the necessary condition of order two at a minimum, the shape Hessian is
positive at such a point.

Let us notice that only the normal component of h appears. Let us also emphasize that
there is no hope to get h = 0 from the structure theorem for second order shape derivative.
The deformation field h appears in D2JLS (ω∗)(h,h) only thought its normal component hn

since ω∗ is a critical point for JLS . This remark explains why we consider in the statement of
Theorem 5 the scalar Sobolev space corresponding to the normal components of the defor-
mation field.

We now prove Theorem 5. From (8), we deduce

D2JLS (ω∗)(h,h) =

∫
∂ω∗

σ1∂nw
′+
LS

[
(u′n)

]
−

∫
∂ω∗

[
σ∂n(u′n)

]
w′−LS
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Substituting their values to the quantities
[
(u′n)

]
and

[
σ∂n(u′n)

]
, we get

D2JLS (ω∗)(h,h) = [σ]
(〈
σ1hn∂nu−n , ∂nw

′+
LS

〉
−

〈
divτ (hn∇τun) , w′−LS

〉)
,

where 〈·, ·〉 denotes the duality between H1/2(∂ω∗) ×H−1/2(∂ω∗) . Let us introduce the opera-
tors

T1 : H1/2(∂ω∗)→ H−1/2(∂ω∗) M1 : H1/2(∂ω∗)→ H1/2(∂ω∗)
h 7→ divτ (hn∇τun) h 7→ w′−LS

T2 : H1/2(∂ω∗)→ H1/2(∂ω∗) M2 : H1/2(∂ω∗)→ H−1/2(∂ω∗)
h 7→ hn∂nu−n h 7→ ∂nw

′+
LS

The Hessian can then be written under the form

D2JLS (ω∗)(h,h) = [σ]
(〈

M2(h),T2(h)
〉
− σ1

〈
T1(h),M1(h)

〉)
.

From the classical results of Maz’ya and Shaposhnikova on multipliers ([8]), we get easily
that T1 and T2 are continuous operators. Operator M1 is the composition of the operators

R1 : H1/2(∂ω∗)→ H1/2
� (∂Ω) and R2 : H1/2

� (∂Ω)→ H1/2(∂ω∗)
h 7→ u′n φ 7→ ψ

where ψ is the trace on ∂ω∗ of Ψ solution of−div (σω∗∇Ψ) = 0 in Ω,

σ1∂nΨ = φ on ∂Ω,
(12)

and H1/2
♦ (∂Ω) is the Sobolev space

H1/2
♦ (∂Ω) =

{
φ ∈ H1/2(∂Ω) :

∫
∂Ω

φ = 0
}
.

While R1 is a continuous operator, R2 is compact. To prove this claim, let us express
u|∂ω∗ = ψ. We use the integral representation formula and classical notation for the layers
operators: we use the convention that the letter S is used for single layer potentials while K
is used for double layer potentials. All the justifications of next claims are standart in the
theory of integral equations. If u solves the boundary value problem (12), then it also solves
the following system of integral equation 1

2 I + µKω∗ κK∂Ω∂ω∗

µK∂ω∗∂Ω κ
(
− 1

2 I + KΩ

)
(u)|∂ω∗

(u)|∂Ω

 = κ

S ∂Ω∂ω∗φ

S Ωφ

 ,
where κ = −σ1/(σ1 + σ2) and µ = [σ] / (σ1 + σ2). The matricial operator arising in this
equation has a continuous inverse. A straightforward computation gives that u|∂ω∗ = ψ solves[(

1
2 I + µKω∗

)
+ µK∂Ω∂ω∗

(
− 1

2 I + KΩ

)−1
K∂ω∗∂Ω

]
ψ = κ

[
S ∂Ω∂ω∗ − K∂Ω∂ω∗

(
− 1

2 I + KΩ

)−1
S Ω

]
φ.

Since the operators K∂Ω∂ω∗ and S ∂Ω∂ω∗ are compact, the operator R2 is compact, hence M1 is
compact. The proof of compactness of M2 is similar and therefore the Hessian is compact.
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