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NUMERICAL SOLUTION OF A LAPLACE

EQUATION WITH DATA IN L1.

J. Casado Díaz, T. Chacón Rebollo, M. Gómez Mármol,
V. Girault and F. Murat

Abstract. In this work, we address the numerical solution of the Laplace equation with
data in L1 by IP 1 finite element schemes. Even if this is a simple problem, its analysis
is difficult and requires new tools because finite element schemes are based on variational
formulations which do not lend themselves to estimates in the L1 norm.

The approach for analyzing this problem consists in applying some of the techniques
that are used by Murat (cf. [5]) and Boccardo & Gallouet (cf. [2]) in constructing the
renormalized solution of the problem. The key ingredient is the assumption that all the
angles of the grid are acute; then the matrix of the system is an M matrix. Interestingly,
with this sole assumption, we prove that uh tends to u in mesure in Ω.
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§1. Introduction

We address in this paper the numerical analysis of first degree finite element schemes approx-
imating the solution of a Laplace equation with weak data, such as data in L1. Let Ω be a
Lipschitz-continuous domain in two or three dimensions with a polygonal or polyhedral bound-
ary ∂Ω, cf. Grisvard [4]. Given an exterior force f in L1(Ω), we want to find u such that

−∆ u = f in Ω , (1)

with the homogeneous boundary condition

u = 0 on ∂Ω . (2)

This problem has a unique renormalized solution u and u belongs to W 1,q
0 (Ω) for any 1 ≤ q <

d/(d − 1), where d denotes the dimension, cf. Boccardo & Gallouet [2], and Boccardo, Díaz,
Giachetti & Murat [1].

Let h > 0 be a discretization parameter that will tend to zero and let Th be a family of
triangulations of Ω. We discretize problem (1), (2) in the standard finite element space:

Vh = {vh ∈ C0(Ω) , ∀T ∈ Th , vh|T ∈ IP 1, vh|∂Ω = 0} , (3)
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and the discrete problem reads: Find uh ∈ Vh solution of

∀vh ∈ Vh ,

∫
Ω

∇uh · ∇ vh dx =

∫
Ω

f vh dx . (4)

Note that this problem has a unique solution. Indeed, it is a square system of linear equations
in finite dimension, and the integral in the right-hand side is well-defined because the functions
of Vh belong to L∞(Ω) (and in fact to W 1,∞(Ω)). But the trouble is that the straightforward
bound for this integral: ∣∣∣∣∫

Ω

f vh dx

∣∣∣∣ ≤ ‖f‖L1(Ω)‖vh‖L∞(Ω) ,

is useless as soon as the dimension is two, because the left-hand side of (4) is elliptic in H1(Ω)
and not in L∞(Ω). Therefore the methods of classical finite element analysis cannot be applied
to (4).

We present one approach for analyzing (4). More precisely, it consists in applying some
of the techniques that are used by Murat [5] and Boccardo & Gallouet [2] in constructing
the renormalized solution of problem (1), (2). The key ingredient is the assumption that all
the angles of the elements in Th are acute; then the matrix of the system (4) is an M matrix.
Interestingly, with this sole assumption, we prove that uh tends to u in measure in Ω. Recall
that this condition also guarantees that the solution of the discrete problem (4) satisfies the
maximum principle.

§2. The Laplace equation: solution by renormalization

Let us recall the definition of the truncation function Tk : IR �→ [−k, k], for any real number
k > 0:

Tk(s) =

{
s if |s| ≤ k ,
sign(s)k if |s| > k .

(5)

For problem (1), (2), u is called a renormalized solution (cf. Di Perna & Lions [3]) if it satisfies:

u ∈ L1(Ω) ,

∀k > 0 , Tk(u) ∈ H1
0 (Ω) ,

lim
k→∞

1

k

∫
|u|≤k

|∇u|2 dx = 0 , (6)

∀µ ∈ W 1,∞
c (IR),∀ϕ ∈ H1

0 (Ω) ∩ L∞(Ω) ,∫
Ω

∇u · (ϕµ′(u)∇u)dx +

∫
Ω

∇u · (µ(u)∇ϕ)dx =

∫
Ω

f µ(u)ϕ dx . (7)

Note that, as µ has a compact support, say its support is contained in [−M, M ] for a real
number M > 0, then µ(u)(x) �= 0 implies that u(x) = TM(u)(x). And furthermore, since
∇TM(u)(x) = 0 for all x such that |u(x)| > M , we have

µ′(u)∇u = µ′(u)∇TM(u) .
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Hence the product µ(u)ϕ belongs to L∞
c (Ω),∇(µ(u)ϕ) belongs to L2

c(Ω)d and all the integrals
in (7) are well-defined.

The results in this section are valid in two and three dimensions. Let us make precise the
family of triangulations Th: it is made of triangles in two dimensions or tetrahedra in three
dimensions, with diameter bounded by h, and such that any two elements are either disjoint or
share a vertex, a whole side or a whole face. We number the interior vertices of Th from 1 to N
and the boundary vertices from N + 1 to P , and denote them by ai, 1 ≤ i ≤ P . As usually, we
denote by hT the diameter of the element T and by ρT the diameter of the ball inscribed in T .
On this family of triangulations, we define the space Vh by (3):

Vh = {vh ∈ C0(Ω) , ∀T ∈ Th , vh|T ∈ IP 1, vh|∂Ω = 0} ,

the discrete problem by (4): Find uh ∈ Vh solution of

∀vh ∈ Vh ,

∫
Ω

∇uh · ∇ vh dx =

∫
Ω

f vh dx ,

and the interpolation operator Πh : C0(Ω) �→ Vh by

Πh(v) ∈ Vh , Πh(v)(ai) = v(ai) , 1 ≤ i ≤ N . (8)

It satisfies in particular:
‖Πh(v)‖L∞(Ω) ≤ ‖v‖L∞(Ω) . (9)

In this section, we shall use the following assumption:
Hypothesis (H)The inner angles (dihedral angles in three dimensions) of all elements T are
not larger than π

2
.

This implies, in particular that the family of triangulations is regular in the sense of Ciarlet:
there exists a constant σ, independent of h, such that

∀T ∈ Th , σT :=
hT

ρT

≤ σ . (10)

In practice, this assumption can be restrictive, because it complicates the construction of the
triangulation. But it has the great advantage that the matrix of the system (4) is diagonally
dominant. This matrixM has entries:

(M)i,j =

∫
Ω

∇ϕi · ∇ϕjdx ,

where ϕi denote the basis function of Vh that takes the value 1 at ai and zero at all other nodes.
Clearly,M is symmetric, positive definite. The fact that it is diagonally dominant follows from
the following well-known result.

Lemma 1. Under Hypothesis (H), we have in dimension d = 2 or 3:

∀i �= j , (M)i,j ≤ 0 . (11)

Proposition 2. Under Hypothesis (H),M is diagonally dominant. It is also an M matrix.
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Then we have the following fundamental theorem.

Theorem 3. Under Hypothesis (H), the solution uh of (4) satisfies for all real numbers k > 0:

|Πh(Tk(uh))|2H1(Ω) ≤ k ‖f‖L1(Ω) . (12)

Proof. Let uh be the solution of (4) and let us choose vh = Πh(Tk(uh)). Observe that Tk(uh)
vanishes on ∂Ω because uh = 0 on ∂Ω. Therefore Πh(Tk(uh)) belongs to Vh and we have∫

Ω

∇uh · ∇Πh(Tk(uh)) dx =

∫
Ω

f Πh(Tk(uh)) dx . (13)

By definition, |Tk(uh)| ≤ k in Ω and (9) yields:

‖Πh(Tk(uh))‖L∞(Ω) ≤ k . (14)

This gives the upper bound for the right-hand side of (13):∣∣∣∣∫
Ω

f Πh(Tk(uh)) dx

∣∣∣∣ ≤ k‖f‖L1(Ω) . (15)

Now, we must derive a lower bound for the left-hand side of (13). We split it into:∫
Ω

∇uh ·∇Πh(Tk(uh)) dx =

∫
Ω

∇(uh−Πh(Tk(uh))) ·∇Πh(Tk(uh)) dx+ |Πh(Tk(uh))|2H1(Ω) ,

(16)
and we must prove that∫

Ω

∇(uh − Πh(Tk(uh))) · ∇Πh(Tk(uh)) dx ≥ 0 .

With the vector notation uh = (uh(ai))
N
i=1 and Tk(uh) = (Tk(uh(ai)))

N
i=1, and using the

symmetry ofM, we can write:∫
Ω

∇(uh − Πh(Tk(uh))) · ∇Πh(Tk(uh)) dx = (M(uh −Tk(uh)),Tk(uh)) =

(uh −Tk(uh),MTk(uh)) , (17)

where (·, ·) denotes the Euclidean scalar product. Therefore, it remains to establish that

(uh −Tk(uh),MTk(uh)) ≥ 0 . (18)

This result follows from the discussion splits according to the value of (uh)i with respect to k.
By substituting (18) into (16) and the result into (13), we derive

|Πh(Tk(uh))|2H1(Ω) ≤
∫

Ω

f Πh(Tk(uh)) dx , (19)

and (12) follows by applying (15) to (19).
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For k ∈ IN , the estimate (12), uniform in h, allows us to extract a subsequence (that we still
denote by h) such that

∀k ∈ IN , lim
h→0

Πh(Tk(uh)) = vk weakly in H1
0 (Ω) and strongly in L2(Ω) . (20)

The strong convergence implies convergence in measure and convergence of a subsequence
(again denoted by h) almost everywhere in Ω. Furthermore, (14) gives

|vk(x)| ≤ k a.e. in Ω , (21)

thus showing that vk is the truncation by Tk of some function. We propose to construct a
function u such that

vk = Tk(u) , lim
h→0

uh = u in measure in Ω ,

and u is the renormalized solution of (1), (2). For this, we require several technical lemmas.

Lemma 4. Let vk be the limit function of (20). Then, we have for any real number s such that
0 < s ≤ k:

lim
h→0

Ts(Πh(Tk(uh))) = Ts(vk) a.e. in Ω .

Proof. This convergence follows readily from the convergence almost everywhere of Πh(Tk(uh))
to vk and the continuity of the truncation operator Ts with respect to this convergence.

Lemma 5. For any real number s and integer k such that 0 < s < k, let Ah(k, s) be the set

Ah(k, s) = ∪{T ∈ Th ; ∃x ∈ T, ∃y ∈ T, |uh(x)| ≥ k, |uh(y)| ≤ s} . (22)

Then

|Ah(k, s)| ≤ k

(k − s)2
h2‖f‖L1(Ω) . (23)

Proof. Let T ⊂ Ah(k, s); from the definition (22), we know that there exist two points x and
y in T , such that

uh(x) ≥ k or uh(x) ≤ −k and − s ≤ uh(y) ≤ s .

Then the fact that uh belongs to IP 1 in T implies that T has two vertices, say ai and aj such
that

uh(ai) ≥ k or uh(ai) ≤ −k and − s ≤ uh(aj) ≤ s .

Hence
Tk(uh)(ai) = k or Tk(uh)(ai) = −k ,

and
−s ≤ Tk(uh)(aj) = uh(aj) ≤ s .

In both cases, since the gradient of Πh(Tk(uh)) is a constant vector in T , this means that

‖∇Πh(Tk(uh))‖ ≥
k − s

hT

≥ k − s

h
,

where ‖ · ‖ denotes the Euclidean vector norm. Therefore

|Πh(Tk(uh))|2H1(Ω) ≥
∫

Ah(k,s)

‖∇Πh(Tk(uh))‖2 dx ≥ |Ah(k, s)|(k − s)2

h2
,

and (23) follows from this lower bound and (12).
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Lemma 5 states that the measure of Ah(k, s) tends to zero as h tends to zero. The next
lemma shows that the measure of the set

B = {x ∈ Ω ; Ts(Πh(Tk(uh)))(x) �= Ts(uh)(x)} (24)

also tends to zero with h.

Lemma 6. For each real number s and integer k with 0 < s < k, the set B is contained in
Ah(k, s).

Proof. The statement is equivalent to the implication: if x /∈ Ah(k, s), then x /∈ B. Thus,
suppose that x /∈ Ah(k, s); the argument depends upon the position of uh with respect to that
of k and s.

• If |uh(x)| ≥ k, then all points y in the same element T satisfy |uh(y)| > s, i.e. either
uh(y) > s or uh(y) < −s. Hence we have for all points in T :

|Ts(uh)| = s , |Tk(uh)| > s , |Πh(Tk(uh))| > s ,

and thus
|Ts(Πh(Tk(uh)))| = s .

As all the quantities (inside the absolute values) have the same sign, we see that x /∈ B.

• If |uh(x)| ≤ s, then all points y in the same element T satisfy |uh(y)| < k. Hence we
have for all points in T :

Tk(uh) = uh , Πh(Tk(uh)) = uh and thus Ts(Πh(Tk(uh))) = Ts(uh) ,

this implies that x /∈ B.

• If s < |uh(x)| < k and if there exists y ∈ T such that |uh(y)| ≤ s, then for all points
z ∈ T , we must have |uh(z)| < k, and we revert to the previous case. If there exists
y ∈ T such that |uh(y)| ≥ k, then we revert to the first case. Therefore, the only
possibility that remains is that s < |uh(y)| < k for all points y ∈ T . Then we have for
all points in T :

Tk(uh) = uh , and thus Πh(Tk(uh)) = uh ,

this implies that x /∈ B.

Proposition 7. For each real number s and integer k with 0 < s < k, we have

lim
h→0

Ts(uh) = Ts(vk) in measure in Ω . (25)

Proof. Let 0 < s < k; for any ε > 0, we define the set

Cε = {x ∈ Ω ; |Ts(uh)− Ts(vk)| > ε} .



Numerical solution of a Laplace equation with data in L1. 97

We are going to prove that |Cε| tends to zero with h. For this, we observe that, in view of
Lemma 6,

|Cε| ≤ |Cε ∩ Ah(k, s)|+ |Cε ∩ Ac
h(k, s)| ≤ |Ah(k, s)|+ |Cε ∩Bc| . (26)

But, if x /∈ B, then
Ts(Πh(Tk(uh))) = Ts(uh) .

As a consequence,

|Cε ∩Bc| ≤ |{x ∈ Ω ; |Ts(Πh(Tk(uh)))− Ts(vk)| > ε}| .

Now thanks to Lemma 4,

lim
h→0

Ts(Πh(Tk(uh))) = Ts(vk) in measure in Ω .

This amounts to say that for any ε > 0, for any real number s and integer k such that 0 < s < k,

lim
h→0

|Cε ∩Bc| = 0 .

This, together with (23), and (26) imply that limh→0 |Cε| = 0 , and (25) follows from the fact
that this limit holds for any ε.

The uniqueness of the limit and the fact that Proposition 7 holds for any pair s and k, with
0 < s < k, give the next corollary.

Corollary 8. For any real number s and integers k and � with 0 < s < k and 0 < s < �, we
have

Ts(vk) = Ts(v�) . (27)

Corollary 9. For any integers k and � with 1 ≤ � < k, we have

v� = T�(vk) a.e. in Ω ; (28)

in particular, for almost all x ∈ Ω such that |vk(x)| ≤ k − 1,

vk(x) = vk−1(x) . (29)

Proof. Applying (27) with 1 ≤ � < k and s < �, we find

∀s < � , Ts(vk) = Ts(v�) . (30)

But vk and v� belong to H1(Ω) ∩ L∞(Ω) and on this space, the truncation operator Ts is con-
tinuous with respect to s. Therefore, passing to the limit as s tends to � in (30), we obtain (28),
thus proving also (29).

This corollary suggests to define u by

u =
∞∑

k=1

vkχk−1≤|vk|<k
, (31)
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i.e. for all x such that k − 1 ≤ |vk(x)| < k, u(x) = vk(x). Thus (29) implies that

vk(x) = Tk(u(x)) , (32)

and for almost every x such that |u(x)| ≤ s < k, we have

u(x) = Ts(u(x)) = Ts(vk(x)) .

Then the uniqueness of the limit and Proposition 7 show that for each real number s > 0,

lim
h→0

Ts(uh(x)) = u(x) in measure in the set {x ; |u(x)| ≤ s} .

As s > 0 is arbitrary, this yields the following theorem:

Theorem 10. The function u defined by (31) is the limit of uh:

lim
h→0

uh(x) = u(x) in measure in Ω . (33)

In order to prove that u defined by (31) is a renormalized solution of (1), (2), we approxi-
mate (1), (2) by regularizing f . For any ε > 0, let f ε ∈ L2(Ω) be an arbitrary approximation
of f such that

lim
ε→0

f ε = f in L1(Ω) , (34)

and let uε ∈ H1(Ω) be the unique solution of

−∆ uε = f ε in Ω , uε = 0 on ∂Ω . (35)

It is proven in Murat [5] that the renormalized solution of (1), (2) is the limit a.e. in Ω of the
solution uε of (35). Hence, if we show that u is the limit of uε, the uniqueness of the limit will
prove that u is the renormalized solution of (1), (2).

Theorem 11. We have:
lim
ε→0

uε = u a.e. in Ω . (36)

Proof. We discretize (35) in Vh by: Find uε
h ∈ Vh satisfying:

∀vh ∈ Vh ,

∫
Ω

∇uε
h · ∇ vh dx =

∫
Ω

f ε vh dx . (37)

This problem has a unique solution and for each ε > 0,

lim
h→0

uε
h = uε strongly in H1

0 (Ω) . (38)

Then subtracting (37) from (4), we obtain

∀vh ∈ Vh ,

∫
Ω

∇(uh − uε
h) · ∇ vh dx =

∫
Ω

(f − f ε)vh dx , (39)

and applying (12) to (39), we derive in particular for any integer k ≥ 1:

|Πh(Tk(uh − uε
h))|2H1(Ω) ≤ k ‖f − f ε‖L1(Ω) . (40)
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Hence this and (34) imply that for each integer k ≥ 1 and real number h > 0,

lim
ε→0

Πh(Tk(uh − uε
h)) = 0 strongly in H1

0 (Ω) , (41)

and this convergence is uniform with respect to h.
Besides this, applying (20) and (32) to (40), there exists a measurable function wε such that

lim
h→0

Πh(Tk(uh − uε
h)) = Tk(w

ε) weakly in H1
0 (Ω) ;

similarly, applying (33) to (40), we have

lim
h→0

(uh − uε
h) = wε in measure in Ω .

Then applying (33) to uh and (38), we obtain

wε = u− uε a.e. in Ω .

It remains to prove that limε→0 wε = 0. The lower semi-continuity of the norm for the weak
convergence and (40) yield:

|Tk(w
ε)|2H1(Ω) ≤ k ‖f − f ε‖L1(Ω) .

Hence, for any integer k ≥ 1
lim
ε→0

|Tk(w
ε)|H1(Ω) = 0 ,

thus implying the desired limit.

Corollary 12. The function u defined by (31) is the renormalized solution of (1), (2) and it
belongs to W 1,q

0 (Ω) for any 1 ≤ q < d/(d− 1), where d is the dimension.

The next theorem collects the main results of this section.

Theorem 13. If Hypothesis (H) holds, the sequence of solutions uh of (4) satisfies for all inte-
gers k ≥ 1:

lim
h→0

Πh(Tk(uh)) = Tk(u) strongly in H1
0 (Ω) ,

and
lim
h→0

uh(x) = u(x) in measure in Ω ,

where u ∈ W 1,q
0 (Ω) for any q < ∞ in one dimension, q < 2 in two dimensions and q < 3/2 in

three dimensions, is the renormalized solution of (1), (2).

Proof. It suffices to establish the strong convergence of Πh(Tk(uh)). From (19), we have

lim sup
h→0

|Πh(Tk(uh))|2H1(Ω) ≤
∫

Ω

f Tk(u) dx .

But, since on one hand, u ∈ W 1,q
0 (Ω) and on the other hand, Tk(u) ∈ L∞(Ω) ∩ H1

0 (Ω) and
∇Tk(u) = 0 in regions with positive measure where |u(x)| ≥ k we can multiply both sides of
(1) by Tk(u), integrate over Ω and apply Green’s formula:∫

Ω

f Tk(u) dx =

∫
Ω

∇u · ∇Tk(u) dx .
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But ∫
Ω

∇u · ∇Tk(u) dx = |Tk(u)|2H1(Ω) ,

therefore
lim sup

h→0
|Πh(Tk(uh))|2H1(Ω) ≤ |Tk(u)|2H1(Ω) .

On the other hand, the lower semi-continuity of the norm for the weak convergence gives

|Tk(u)|2H1(Ω) ≤ lim inf
h→0

|Πh(Tk(uh))|2H1(Ω) .

Hence
lim
h→0

|Πh(Tk(uh))|H1(Ω) = |Tk(u)|H1(Ω) ,

whence the strong convergence.

Acknowledgements

This research was partially supported by Spanish Government REN2000-1162-C02-01 and
REN2000-1168-C02-01 Grants.

References

[1] BOCCARDO, L., DÍAZ, I., GIACHETTI, D., MURAT, F. Existence of a solution for a weaker form
of a nonlinear elliptic equation. Recent Advances in Nonlinear Elliptic and Parabolic Problems:
Notes in Math. 208, Longman, Harlow, 1989.

[2] BOCCARDO, L., GALLOUET, T. Nonlinear Elliptic and Parabolic Equations Involving Measure
Data. J. Funct. Anal. 87 (1989), 149–169.

[3] DI PERNA, R. AND LIONS P.-L. On the Fokker-Planck-Boltzmann equations. Comm. Math. Phys.,
120 (1988), 1–23.

[4] GRISVARD, P. Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Math-
ematics, 24, Pitman, Boston, MA, 1985.

[5] MURAT, F. Soluciones renormalizadas de ecuaciones en derivadas parciales elípticas no lineales,
Publications du Laboratoire d’Analyse Numérique, UPMC, 93023, Cours à l’Unversité de Séville,
1993.

J. Casado Díaz, T. Chacón Rebollo and M.
Gómez Mármol
University of Sevilla. Facultad de Matemáticas
c/ Tarfia s/n 41012 Sevilla
jcasadod@us.es,chacon@us.es,
macarena@us.es

V. Girault and F. Murat
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
75252 Paris cedex 05, France
girault@ann.jussieu.fr,
murat@ann.jussieu.fr


