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Abstract. It is shown that both a model of traffic flow with driver reaction and discontinu-
ous road surface and a model of continuous sedimentation of flocculated suspensions give
rise to strongly degenerate parabolic problems with discontinuous coefficients. For one of
these models, an existence and uniqueness theory is outlined, which includes the conver-
gence proof for a simple difference scheme. This scheme is used to produce numerical
simulations of both applications.
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§1. Introduction

In recent years we have seen an increased interest in degenerate parabolic equations with dis-
continuous coefficients of the type

ut + f
(
γ1(x), u

)
x

=
(
γ2(x)A(u)x

)
x
, x ∈ R, t > 0, (1)

where γ1(x) and γ2(x) are discontinuous parameters, and γ1(x) may be vector-valued. We
assume A′(·) ≥ 0, which includes a first-order conservation law. Solutions of (1) are in gen-
eral discontinuous and need to be defined as entropy weak solutions. For smooth coefficients,
equation (1) is in included in the classical well-posedness (existence and uniqueness) theory
by Vol’pert and Hudjaev [9], but this calculus breaks down when fluxes and depend discontin-
uously on the location x. We refer to [5, 6] for a historical account on conservation laws and
degenerate parabolic equations with discontinuous coefficients.

We consider here two applications giving rise to equations of type (1). In §2 we first
consider Mochon’s extension [7] of the Lighthill-Whitham-Richards (LWR) kinematic traf-
fic model to roads with abruptly changing surface conditions, which gives rise to a flux density
function that varies discontinuously with respect to x. This model is then combined with a
diffusively corrected kinematic wave model [8], which leads to an additional second-order dif-
fusion term accounting for the drivers’ anticipation length and reaction time. The final model
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appears in two variants (Models 1 and 2). Both have discontinuous parameters in the flux but
only Model 2 also includes a discontinuous parameter in the diffusion.

In §3 we outline a model of continuous sedimentation of flocculated suspensions in so-
called clarifier-thickener units (Model 3), which includes a degenerate diffusion term with a
discontinuous parameter.

In [5, 6] a rather general well-posedness (existence and uniqueness) theory is developed for
strongly degenerate convection-diffusion equations with discontinuous coefficients. Since in
[5, 6] the diffusion function is not allowed to depend on x, we restrict ourselves in §4 to the
initial value problem for Model 1. It seems, however, likely that the analysis can be extended
to the x-dependent diffusion case, including Models 2 and 3. This is work in progress [4].

The existence proof for Model 1 outlined in §4 is constructively based on proving conver-
gence of a modification of the Engquist-Osher finite difference scheme. This scheme is applied
in §5 to produce two traffic flow simulations for Model 1. Furthermore we present a simulation
of the operation of a clarifier-thickener (Model 3) obtained from a semi-implicit variant of that
scheme.

§2. Traffic flow with driver reaction and abruptly changing road surface

The classical LWR kinematic model for car traffic on a single-lane highway starts from the
conservation equation ρt(x, t) +

(
ρ(x, t)v(x, t)

)
x

= 0, where ρ is the density of cars as a
function of distance x and time t and v(x, t) is the velocity of the car located at point x at time t.
The main constitutive assumption is that v is a function of ρ only, v = v(ρ), which yields the
conservation law ρt + (ρv(ρ))x = 0 for x ∈ R and t > 0. Thus, each ‘driver’ instantaneously
adjusts his velocity to the local car density. We assume here that v(ρ) = vmaxV (ρ), where vmax

is the preferred velocity on a free highway, and V (ρ) is a ‘hindrance’ function modeling the
presence of other cars that urge each driver to reduce his speed. We define

ρv(ρ) = vmaxf(ρ), f(ρ) := χ[0,ρmax](ρ)ρV (ρ), (2)

where ρmax is the maximum car density corresponding to the ‘bumper-to-bumper’ situation.
In this note, we restrict ourselves to the Dick-Greenberg model V (ρ) = VDG(ρ) = min{1,
C ln(ρmax/ρ)}, where C is a parameter. Common examples besides VDG(ρ) and further refer-
ences are listed in [2].

Mochon [7] extended the LWR model to abruptly changing road surface conditions by
letting vmax depend discontinuously on x, i.e. vmax = vmax(x). For example, the largest part of
the highway may admit a velocity v0

max, and there may be one road segment [a, b] experiencing
heavy rainfall, fog, or bad pavement, which enforces a reduction of the maximum velocity to
a value v∗

max < v0
max. Alternatively, we could assume that the segment [a, b] admits a higher

maximum velocity v∗
max > v0

max. Thus, we consider

vmax(x) =

{
v0

max for x < a and x > b,

v∗
max for x ∈ (a, b),

v∗
max < v0

max (Case A) or v∗
max > v0

max (Case B).

(3)

We now let γ(x) := vmax(x) and rewrite the conservation law ρt + (ρv(ρ))x = 0, modified by
(3), as ρt + (γ(x)f(ρ))x = 0 for x ∈ R and t > 0.
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We now turn to the second ingredient of the new model. The realism of the assumption
v = v(ρ) has been seriously questioned. A potentially more realistic model due to Nelson
[8] considers a reaction time τ , representing drivers’ delay in their response to events, and
an anticipation distance L that partially compensates this delay. Consequently, the velocity
function V (ρ(·, ·)) is evaluated not at the point x, but at x + L. The reaction time is included
by replacing the argument t by t− τ , and reducing the argument x + L by the distance vmaxV τ
traveled in time τ , see [8]. These considerations lead to v(x, t) = vmaxV (ρ(x+L−vmaxV τ, t−
τ)). Expanding this expression around ρ(x, t), we arrive at [2, 8]

ρv = vmax

[
ρV (ρ) + ρV ′(ρ)

(
L + τρvmaxV

′(ρ)
)
∂xρ
]
+O(τ 2 + L2). (4)

The reaction length L can also be considered to depend on v(ρ), i.e., L = L(ρ) = L(v(ρ)), see
[8]. Neglecting the O(τ 2 + L2) term, inserting the right-hand side of (4) into ρt + (ρv)x = 0,
and assuming that up to a critical car density 0 ≤ ρc ≤ ρmax, the diffusion effect is not present,
we finally obtain

ρt + f(ρ)x = D(ρ)xx, x ∈ R, t > 0, (5)

where D(ρ) :=

∫ ρ

0

d(s) ds, d(ρ) := −χ[ρc,ρmax](ρ)ρvmaxV
′(ρ)
(
L(ρ) + τvmaxρV ′(ρ)

)
,

(6)

where f(ρ) is given by (2). There are at least two motivations for postulating a critical density
ρc. One of them [8] is based on using V (ρ) = VDG(ρ). Since V ′

DG(ρ) = 0 for ρ ≤ ρc :=
ρmax exp(−1/C), we see that setting V (ρ) = VDG(ρ), (6) is satisfied. A more general view-
point is that drivers’ reaction is instantaneous in relatively free traffic flow, when ρ ≤ ρc, and
otherwise is modeled by the diffusion term. Both views give rise to the same behaviour of the
diffusion coefficient. We assume that V (ρ) is chosen such that d̃(ρ) > 0 for ρc < ρ < ρmax.
Thus, the right-hand side of (5) vanishes on [0, ρc], and possibly at ρmax. Thus, (5) is a second-
order degenerate parabolic quasilinear partial differential equation. Since (5) degenerates on
the ρ-interval of positive length [0, ρc], we call (5) strongly degenerate parabolic.

Finally, we point out that Nelson [8] suggests a dependence L = L(v(ρ)) of the type
L(v(ρ)) = L̃(v(ρ)) := max{(v(ρ))2/(2a), Lmin}, where the first argument is the distance
required to decelerate to full stop from speed v(ρ) at deceleration a, and the second is a minimal
anticipation distance.

The two modifications of the LWR model discussed so far are now combined into an equa-
tion for traffic flow with drivers’ anticipation and changing road surface conditions. We will do
so by admitting two variants, referred to as ‘Model 1’ and ‘Model 2’. Model 1 assumes that the
diffusion term models ‘driver psychology’ and should therefore be independent of road surface
conditions. Thus, Model 1 is produced by replacing f(ρ) in (5) by the expression γ(x)f(ρ)
appearing in ρt + (γ(x)f(ρ))x = 0, but at the same time the driver reaction is determined by
the constant value vmax = v0

max in (3).
The more involved Model 2 is based on replacing every occurrence of vmax by vmax(x) in

the derivation of (5). Since the expansion (4) remains valid if we replace the constant vmax by
vmax(x), even when vmax is discontinuous, it is straightforward to derive the strongly degenerate
convection-diffusion equation

ρt +
(
γ(x)f(ρ)

)
x

= D2

(
ρ, γ(x)
)
xx

, D2

(
ρ, γ(x)
)

:=
∫ ρ

0
χ[ρc,ρmax](s)γ(x)r

(
s; τ, L(s, γ(x))

)
ds

(7)



74 Raimund Bürger and Kenneth H. Karlsen

Figure 1: Schematic drawing of a clarifier-thickener unit.

for Model 2. Note that L in general depends on v(ρ). Thus, if v(ρ) depends on γ(x), then
L = L(ρ, γ(x)). Observe that the use of L = L̃(v(ρ)), for example, implies that D2 depends
nonlinearly on γ(x).

Model 1 leads to the simpler strongly degenerate convection-diffusion equation

∂tρ + ∂x

(
γ(x)f(ρ)

)
= ∂2

xD1(ρ), x ∈ R, t > 0, with D1(ρ) := D2(ρ, v0
max). (8)

Observe that we can combine the two models into the single equation

ρt +
(
γ1(x)f(ρ)

)
x

=
(
γ2(x)R(ρ, γ2(x))x

)
x
, R
(
ρ, γ2(x)

)
:=
(
1/γ2(x)

)∫ ρ

0

d
(
s, γ2(x)

)
ds,

(9)

where γ1(x) := γ(x) = vmax(x) for both models, γ2 ≡ v0
max for Model 1 and γ2(x) := γ(x)

for Model 2, where v0
max and vmax(x) are defined in (3). For L = τ = 0, (9) reduces to the

first-order equation ρt + (γ(x)f(ρ))x = 0. For simplicity, we set [a, b] = [0, 1], and consider a
prescribed initial car density

ρ(x, 0) = ρ0(x), x ∈ R. (10)

§3. Clarifier-thickener models

The settling of a monodisperse, flocculated suspension of small particles in a fluid [1] can be
described by the following second-order PDE for the solids concentration u as a function of
depth x and time t:

ut +
(
q(x, t)u + h(u)

)
x

= A(u)xx, (11)

where q(x, t) is the local bulk velocity of the mixture, the function h(u) is the hindered settling
function satisfying h(u) = 0 for u ≤ 0 and u ≥ 1, h(u) > 0 for 0 < u < 1, h′(0) > 0 and
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h′(1) ≤ 0, and A(u) is an integrated diffusion coefficient accounting for sediment compress-
ibility. Usually it is assumed that

A(u) :=
∫ u

0
a(s) dx, a(u) :=

h(u)σ′
e(u)

∆�gu
, σ′

e(u) :=
d

du
σe(u), σe(u), σ′

e(u)

{
= 0 for u ≤ uc,

> 0 for u > uc,

(12)

where σe(u) is the effective stress function (the second function besides h(u) characterizing the
suspension), ∆� > 0 is the solid-fluid density difference, g is the acceleration of gravity, and
uc is a critical concentration at which the solid particles are assumed to touch each other. See
[1] for details. From (12) we infer that A(u) = 0 (and thus (11) is first-order hyperbolic) for
u ≤ uc and u = 1, and otherwise A′(u) > 0 and (11) is second-order parabolic. Consequently,
(11) is strongly degenerate parabolic.

We now extend (11) to continuously operated clarifier-thickener units as drawn in Figure 1.
At x = 0, fresh suspension (with known solids concentration uF) is pumped into the unit at a
volume rate QF ≥ 0. This inflow is divided into an upwards-directed overflow QL ≤ 0 and a
downwards-directed discharge underflow QR ≥ 0. We always have QF = QL − QR, so that
QL and QR are independent control flow variables. At x = xL and x = xR, the mixture leaves
the unit through a thin pipe in which the solids and the fluid move at the same speed. Thus, the
functions h(u) and a(u) are “switched off” for x ≤ xL and x ≥ xR. We are interested in u as
a function of x and t. Figure 1 shows a typical steady-state situation, in which no solids pass
into the upper (clarification) zone, and the lower (thickening) zone is divided into a hindered
settling region (where u ≤ uc) and a compression region (where u > uc).

The splitting of the feed flow into two diverging bulk flows and the reduction of (11) to
a linear transport equation (since h(u) and a(u) are “switched off”) at x ≤ xL and x ≥ xR

imply the following governing equation for the clarifier-thickener unit, where S(x) is the cross-
sectional area:

S(x)ut + G(x, u)x =
(
γ1(x)A(u)x

)
x
, x ∈ R, t > 0, γ1(x) := χ(xL,xR)(x), (13)

G(x, u) =

{
QL(u− uF) for x < xL,

QL(u− uF) + S(x)h(u) for xL < x < 0,

QR(u− uF) + S(x)h(u) for 0 < x < xR,

QR(u− uF) for x > xR.

In this note we limit ourselves to a vessel with constant interior cross-sectional area, i.e., we
let S(x) = S0 for x < xL and x > xR and S(x) = Sint otherwise. In this case, the solution does
not depend on the value of S0, as is shown in [4], and defining the velocities qR := QR/Sint,
qL := QL/Sint, and the diffusion functions a(·) := a(·)/Sint, A(·) := A(·)/Sint, we finally
obtain the clarifier-thickener model

ut + g(x, u)x =
(
γ1(x)A(u)x

)
x
, x ∈ R, t > 0, (14)

u(x, 0) = u0(x), x ∈ R, (15)

g(x, u) :=

{
qL(u− uF) for x < xL,

qL(u− uF) + h(u) for xL < x < 0,

qR(u− uF) + h(u) for 0 < x < xR,

qR

(
v − uF) for x > xR.

(16)

We refer to (14)–(16) as Model 3. Observe that the variation of S(x) at x = xL and x = xR does
no longer appear in (14). This significantly facilitates the analysis. Finally, we define the vector
of discontinuity parameters γ := (γ1, γ2) with γ2(x) = QL for x < 0 and γ2(x) = QR for
x > 0, and the flux function f(γ(w), v) := g(x, u) = (γ1(x)/Sint)h(u)+(γ2(x)/Sint)(u−uF).
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§4. Mathematical analysis

We here recall the main results of [5, 6], applied to Model 1, under the following assumptions
on ρ0:

ρ0 ∈ L1(R) ∩BV (R); ρ0(x) ∈ [0, ρmax], A(ρ0) is absolutely continuous on R; A(ρ0)x ∈ BV (R).
(17)

Thus, any jump in ρ0 must be contained within [0, ρc]. However, this is a technical condition
for the mathematical analysis, but one may use more general initial conditions for numerical
simulations (§ 5).

Independently of the smoothness of γ(x) = vmax(x), solutions to (8), (10) can be discon-
tinuous since D′

1(ρ) = 0 for ρ ≤ ρc. Therefore (8), (10) need to be interpreted in the weak
(distributional) sense. Moreover, one needs an additional condition, the entropy condition, to
single out a unique solution.

We denote by M(ΠT ) the finite Radon (signed) measures on ΠT . The space BV (ΠT ) of
functions of bounded variation is defined as the set of locally integrable functions W : ΠT → R
for which ∂xW, ∂tW ∈ M(ΠT ). In this paper we use the space BVt(ΠT ) of locally integrable
functions W : ΠT → R for which only ∂tW ∈ M(ΠT ). Of course, we have BV (ΠT ) ⊂
BVt(ΠT ). We can also define the space BVx(ΠT ) by replacing the condition ∂tW ∈ M(ΠT )
by ∂xW ∈ M(ΠT ). Moreover, we denote by D(ΠT ) the space of test functions on ΠT that
vanish for t = 0 and t = T , i.e., D(ΠT ) = C∞

0 (R× (0, T )).
Equipped with these definitions, we can state entropy solution concept as follows.

Definition 1 (BVt entropy solution). Let ΠT = R × (0, T ) with T > 0 fixed. A function
u : ΠT → R is a BVt entropy solution of the initial value problem (8), (10) on ΠT if (a)
ρ ∈ L1(ΠT ) ∩ BVt(ΠT ) and ρ(x, t) ∈ [0, ρmax] for a.e. (x, t) ∈ ΠT , (b) D1(ρ) is continuous
and D1(ρ)x ∈ L∞(ΠT ),

(c) ∀c ∈ R, ∀0 ≤ φ ∈ D(ΠT ) :

∫∫
ΠT

(
|ρ− c|φt + sgn (ρ− c)γ(x)(f(ρ)− f(c))φx

+
∣∣D1(ρ)−D1(c)

∣∣φxx

)
dt dx +

∫ T

0

∣∣v0
max − v∗

max

∣∣f(c) (φ(a, t) + φ(b, t)) dt ≥ 0, (18)

(d) condition (10) is satisfied in the following strong L1 sense: (19)

ess lim
t↓0

∫
R

∣∣ρ(x, t)− ρ0(x)
∣∣ dx → 0.

The entropy condition (18) implies that (8) also holds in the weak sense. It is well known
that there exists an entropy solution to (8), (10) on ΠT if γ(x) depend smoothly on x, and this
solution belongs to BV (ΠT ) if assumptions (17) on ρ0 are satisfied, see [9]. However, with
γ(x) depending discontinuously on x, it is hard (if possible) to prove that u ∈ BVx(ΠT ). It is,
however, possible to prove that there exist solutions in BVt(ΠT ), and this motivates the BVt

requirement in part (a) of Def. 1.

Theorem 1 (L1 stability and uniqueness). Let ρ1, ρ2 be two BVt entropy solutions to (8),
(10) on ΠT with initial data ρ1,0, ρ2,0 satisfying (17). Then ‖ρ1(·, t) − ρ2(·, t)‖L1(R) ≤ ‖ρ1,0 −
ρ2,0‖L1(R) for a.e. t ∈ (0, T ). In particular, there exists at most one BVt entropy solution of (8),
(10).
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The proof of Theorem 1 can be found in [6]. It relies on jump conditions that relate limits
from the right and left of the BVt entropy solution ρ(·, t) at x = a, b (the two points where
γ(x) has jump discontinuities). To be more precise, we use a Rankine-Hugoniot condition
expressing conservation across the jumps at x = a, b, and also an entropy jump inequality
which is a consequence of the entropy condition (18). Let ξ = a or b, and introduce the
notation γ± := γ(ξ±), ρ± := ρ±(t) := ρ(ξm±, t), D1,± := D1,±(t) := D1(ξm±, t) and
D1(x, t) := D1(ρ)x(x, t). The existence of the above limits (traces) is not entirely obvious
since Definition 1 says nothing about the regularity of ρ(x, t) in the x variable. Nevertheless, in
[6] it is proved that the above traces exist due to the entropy condition (18) and the assumption
that ρ ∈ BVt(ΠT ), i.e., ut ∈ L1(ΠT ). Equipped with the existence of these traces, one can
easily prove that the following Rankine-Hugoniot and entropy jump conditions hold for a.e. t ∈
(0, T ):

γ+f(ρ+)−D1,+ = γ−f(ρ−)−D1,− and (20)(
γ+F (ρ+, c)− sgn (ρ+ − c)D1,+

)
−
(
γ−F (ρ−, c)− sgn (ρ− − c)D1,−

)
≤
∣∣v0

max − v∗
max

∣∣f(c)
(21)

for all c ∈ R, where F (u, v) = sgn (u − v)(f(u) − f(v)) denotes the Kružkov entropy flux.
The jump conditions (20) and (21) are essential ingredients in the uniqueness proof in [6].

Together with Theorem 1, the next theorem shows that our Model 1 is mathematically well
posed.

Theorem 2 (Existence). Suppose that (17) holds. Then there exists a BVt entropy solution
ρ(x, t) to the initial value problem (8), (10).

The proof of Theorem 2 [5] is constructive and is based on proving convergence (compact-
ness) of an explicit finite difference scheme. Let us state a generalization of this finite difference
that applies to Model 1 and 2, not just Model 1, and which is used in § 5 for computational
purposes. The difference scheme for (9), (10) is a straightforward extension of the scheme an-
alyzed in [5, 6] to diffusion terms including a discontinuous coefficient. To define the scheme,
we choose ∆x > 0, set xj := j∆x, and discretize the parameter vector γ(x) := (γ1(x), γ2(x))
and the initial datum ρ0(x) by

γj+1/2 := γ (x̂j+1/2+) , ρ0
j :=

1

∆x

∫ xj+1/2

xj−1/2

ρ0(x) dx, j ∈ Z,

where x̂j+1/2 is any point lying in the interval Ij+1/2 = (xj, xj+1).
Observe that the spatial discretization of γ is staggered against that of ρ. We choose ∆t, set

λ := ∆t/∆x, µ = ∆t/(∆x)2, and for n > 0 define the approximations {ρn
j }j,n, ρn

j ≈ ρ(xj, tn)
according to the explicit marching formula involving the well-known numerical (Engquist-
Osher) flux:

ρn+1
j = ρn

j −∆−
[
λγ1

j+1/2f
EO
(
ρn

j+1, ρ
n
j

)
− µγ2

j+1/2∆+R
(
ρn

j , γ2
j−1/2

)]
, (22)

fEO(v, u) :=
1

2

[
f(u) + f(v)−

∫ v

u

∣∣f ′(s)
∣∣ ds

]
. (23)

We use ∆+ and ∆− to denote the forward and backward difference operators in the x direction,
for example, ∆+ρn

j = ρn
j+1 − ρn

j = ∆−ρn
j+1. For Model 1, (22) simplifies to the scheme
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discussed below:

ρn+1
j = ρn

j −∆−
[
λγj+1/2f

EO
(
ρn

j+1, ρ
n
j

)
− µ∆+D1

(
ρn

j

)]
. (24)

Finally, we let tn := n∆t, In := [tn, tn+1) and Ij := [xj−1/2, xj+1/2), and define the approx-
imations ρ∆ and γ∆ of ρ and γ by setting ρ∆ = ρn

j and γ∆ = γj+1/2 on Ij × In and Ij ,
respectively.

According to [5, 6], the proof of Theorem 2 consists in establishing two main parts: (i)
compactness of the sequence {ρ∆}∆>0, i.e., that there exists at least a subsequence that con-
verges in L1

loc(ΠT ) to limit function ρ and (ii) satisfaction of the entropy condition (18) by the
limit ρ. Then Theorem 1 implies that the whole sequence {ρ∆}∆>0 converges in L1

loc(ΠT ) to
the BVt entropy solution of (8), (10).

We sketch the main steps of (i) and (ii). First of all, the difference scheme (24) is monotone,
which means that if the scheme is written in the form ρn+1

j = Gj(ρ
n
j+1, ρ

n
j , ρn

j−1, γj−1/2, γj+1/2),
then ∂ρn+1

j /∂ρn
j+k = ∂Gj/∂ρn

j+k ≥ 0 for k = −1, 0, 1. This can easily be verified. Moreover,
we have that ρn

j ∈ [0, ρmax] for all j, n if the following CFL condition holds:

λ max
{
v0

max, v
∗
max

}
max

[0,ρmax]
|f ′|+ µ max

[0,ρmax]
|D′

1| ≤ 1/2. (25)

An important consequence of monotonicity is L1 time continuity of the numerical approxima-
tions, i.e.

∃C > 0 independent of ∆ : ∀n ∈ N∪ {0} : ∆x
∑
j∈Z

∣∣ρn+1
j − ρn

j

∣∣ ≤ ∆x
∑
j∈Z

∣∣ρ1
j − ρ0

j

∣∣ ≤ C∆t.

(26)
It is not possible to derive a corresponding estimate in space since γ is discontinuous (see [5]),
but (26) plays a key role in deriving a bound on the space translates of a certain transformed
variable (the so-called singular mapping Ψ(γ, ρ)). In passing, we note that (26) will ensure that
any limit of {ρ∆}∆>0 belongs to BVt(ΠT ). The singular mapping Ψ(γ, ρ) in [5] is designed to
be Lipschitz continuous in both variables and strictly increasing as a function of ρ, and it reads

Ψ(γ, ρ) = γ

∫ ρ

0

χ[0,ρc](ξ)|f ′(ξ)| dξ + D1(ρ) =: F(γ, ρ) + D1(ρ), (27)

The singular mapping zeroes out the contribution of the convective flux wherever D1(ρ) is non-
degenerate. It is easy to check that ∂Ψ(γ, ρ)/∂ρ > 0 for a.e. ρ ∈ [0, ρmax], hence ρ �→ Ψ(γ, ρ)
is strictly increasing.

Let z∆(x, t) := Ψ(γ, ρ∆(x, t)). The strategy is to prove L1 convergence along a subse-
quence of {z∆}∆>0. This also implies convergence of {ρ∆}∆>0 since ρ �→ Ψ(γ, ρ) is invert-
ible. To prove convergence of {z∆}∆>0, [5] proceeds in two separate steps: (a) Convergence of
the diffusion part of Ψ(γ, ρ), namely D∆

1 (x, t) := D1(ρ
∆). (b) Convergence of the hyperbolic

part of Ψ, namely F∆(x, t) := F(γ∆, ρ∆).
Step (a) is achieved by an energy argument, which implies that {D∆

1 (x, t)}∆>0 converges
along a subsequence a.e. and in L2

loc(ΠT ) to a limit D1 ∈ L2(0, T ; H1(R)). Moreover, D1 =
D1(ρ), where ρ is the L∞(ΠT ) weak-� limit of ρ∆. It is possible to improve the regularity of
D1(ρ). From (26) the space estimate |D1(ρ

n
j )−D1(ρ

n
i )| ≤ C|j − i|∆x for all i, j ∈ Z and

for some constant C that is independent of ∆, followes easily. One can also prove the time
estimate |D1(ρ

n
j )−D1(ρ

m
j )| ≤ C(|n−m|∆t)1/2 for all m, n ∈ N ∪ {0}, for some constant C
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Figure 2: Top: the flux function vmaxfDG (left), the integrated diffusion coefficient D1(ρ) (mid-
dle) and its derivative d1(ρ) (right) used for the (traffic) Model 1, bottom: numerical simulation
of Model 1: Case A (left) and Case B (right) showing plots of the car density ρ combined with
selected car trajectories.

that is independent of ∆. These estimates imply eventually that D1(ρ) is (Hölder) continuous
and D1(ρ)x ∈ L∞(ΠT ), i.e., that condition (b) of Definition 1 holds.

Step (b) is achieved by uniformly bounding the total variation of F∆(·, t) for all t ∈ (0, T ).
The proof of this bound relies on a particular cell entropy inequality satisfied by the difference
scheme.

In view of (26) and the total variation bound on F∆, {F∆}∆>0 converges along a sub-
sequence to a limit function F a.e. and in L1

loc(ΠT ). Compactness of {D∆
1 (x, t)}∆>0 and

{F∆(x, t)}∆>0 separately implies the desired compactness of {z∆}∆>0. Let z(x, t) be a limit
point of {z∆}∆>0 and define ρ(x, t) := Ψ−1(γ(x), z(x, t)). One can prove that ρ(x, t) is a BVt

entropy solution to the initial value problem (8), (10). In particular, one proves that ρ satisfies
the entropy condition (18) as a consequence of the cell entropy inequality (not written out here).
See [5, 6] for the complete proofs of Theorems 1 and 2.

§5. Numerical examples

We first consider Model 1 for traffic flow with the parameters [2, 8] ρmax = 220 cars/mi
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Figure 3: Numerical simulation of a clarifier-thickener treating a flocculated suspension
(Model 3).

and C = e/7 = 0.3883. Using these parameters in VDG(ρ) we obtain the convex flux function
plotted in Figure 2 (top left), and ρc = 0.07614ρmax = 16.751 cars/mi. Furthermore, using
L = L̃(v(ρ)) along with Lmin = 0.05 mi, a = 0.1 g, τ = 2 s and v0

max = 70 mph, we obtain the
diffusion functions D1(ρ) and d1(ρ) = D′

1(ρ) shown in the top middle and top right diagrams
of Figure 2. Explicit algebraic expressions for fDG(ρ), D1(ρ) and d(ρ) are provided in [2].
We present here two numerical simulations produced by ∆x = 0.01 mi, λ = 0.0003 h/mi,
vmax(x) = vA

max(x) for Case A and vmax(x) = 95 mph− vA
max(x) for Case B, where

ρ0(x) =

⎧⎪⎨⎪⎩
220 cars/mi for x ∈ [−1 mi, 0),

60 cars/mi for x ∈ [−2 mi,−1 mi),

0 otherwise,

vA
max(x) :=

{
70 mph for x < 0 and x > 1 mi,

25 mph for x ∈ [0, 1 mi].

In both cases the diffusion functions are based on v0
max = 70 mph. Figure 2 shows the numeri-

cal results.
In Figure 3 we consider a clarifier-thickener unit with xR = −xL = 1 m treating a sus-

pension with h(u) = 0.0001χ[0,1](u)u(1 − u)5 m/s, uc = 0.1, ∆� = 1500 kg/m3, and
σe(u) = χ[uc,1](u)((u/uc)

6−1) Pa. We choose qL = −1.0×10−5 m/s, qR = −2.5×10−6 m/s,
start from a vessel initially full of water (u0 ≡ 0) and attain different steady states before even-
tually emptying the unit by setting

uF(t) =

{
0.086 for t ≤ 0.4T ,

0.08 for 0.4T < t ≤ 0.6T ,

0.088 for 0.6T < t ≤ 0.95T ,

0 for t > 0.95T ,
T := 7.0× 107 s.

The parameters ∆x = 1/150 m and λ = 4000 s/m refer to a semi-implicit variant of the
scheme [4].
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