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ADAPTIVE NUMERICAL INTEGRATION ON

SPHERICAL TRIANGLES

Natalia Boal and Francisco-Javier Sayas

Abstract. In this work we present an adaptive algorithm for the numerical approximation
of integrals on parts of a spherical surface. The rules are constructed by dividing progres-
sively a basic triangulation of a spherical triangle following [3] and mapping the curved
triangulation to a polyhedron where integrals are approximated by simple two–dimensional
rules (see [2]).

We show numerical evidence of the possibility of applying Richardson extrapolation
to accelerate the convergence and to estimate the error. With arguments close to those
used in [5] we give a formal justification of why this is possible and construct an adaptive
algorithm by refining the triangulation where needed.
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§1. Introduction

The following work deals with numerical integration over spherical polygons, i.e., connected
regions of the unit sphere, S2, bounded by maximum circles. Such integrals are interesting
because they appear in an extensive variety of applications, for example, in Boundary Element
Methods (where the integrand can be highly oscillating in parts of the polygon) and in Partial
Differential Equations on smooth surfaces (for instance, those appearing in computation of
diffraction coefficients for wedge–shaped objects). Our contribution is a first step towards
construction and full theoretical justification of automatic integration rules.

If we take T0 a partition of a spherical polygons Ω into triangles, we can write∫
Ω

ψ =
∑
T∈T0

∫
T

ψ. (1)

Thus, the problem reduces to computing the integral of ψ on each spherical triangle T and,
from now on, for simplicity, we will restrict the exposition to Ω being a spherical triangle,
which will be denoted K.

We aim to approximate the integral with some degree of optimality in the number of eval-
uations, obtaining as much precision as we desire and controlling the error. To do that, we
propose an adaptive compound integration rule on triangulations of K. These triangulations
will not have the restriction of being à la Ciarlet: we will admit that triangles share only part of
their common sides. We will also try to construct the triangulation well adapted to the integral
to be computed, i.e, coarse where we detect “smooth behaviour” and fine in “difficult places”.
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§2. An elementary simple rule

Let K be the initial spherical triangle and v1, v2, v3 ∈ IR3 be its three vertices. Let

K̂ := {(s, t) | 0 ≤ s, t, s + t ≤ 1}

be the plane reference triangle and let f : K̂ → IR3 be given by

f(s, t) := v1 + t(v2 − v1) + s(v3 − v1).

It is clear that f maps K̂ onto K∗, the plane triangle in IR3 with vertices v1, v2, v3.
When those vertices belong to the same open hemisphere of S2, the function g : K̂ → S2

g(s, t) :=
f(s, t)

|f(s, t)|
is a parameterization of the spherical triangle K. If σ(s, t) := |∂sg × ∂tg|(s, t) represents the

K

g

K

K
*

Figure 1: Mapping the reference triangle K̂ onto the spherical triangle K.

area element, being

∂tg =
1

|f | (v2 − v1)−
f · (v2 − v1)

|f |3 f ,

∂sg =
1

|f | (v3 − v1)−
f · (v3 − v1)

|f |3 f ,

then we can write ∫
K

ψ =

∫
K̂

(ψ ◦ g) σ (2)

and use a quadrature rule on K̂ to approximate the integral.
In the plane we can opt for different rules. We select the simplest, the barycentre (centroid)

rule. Therefore, if we denote b̂ := (1/3, 1/3) the barycentre of the reference triangle, we have∫
K̂

φ ≈ 1

2
φ(b̂).

Employing the parameterization g and applying this formula to (2) we obtain∫
K

ψ ≈ 1

2
ψ(g(b̂)) σ(b̂).

On the other hand, g maps the barycentre b̂ to the intersection point of three medians on the
spherical triangle that we denote

b := g(b̂).
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We thus define the barycentre rule on a spherical triangle to approximate the integral (2) as

I0(ψ, K) := ωK ψ(b) (3)

with weight
ωK := σ(b̂)/2.

It is important to remark that, although the two-dimensional barycentre formula has degree of
precision 1, i.e, it is exact for polynomials of degree up to 1, this basic rule I0 is not consistent
since it does not integrate exactly even for constant functions.

§3. Compound integrate rules

Let m1, m2 and m3 be the midpoints of the sides of the spherical triangle K, which can be
computed as

m1 =
1

|v2 + v3|
(v2 + v3), m2 =

1

|v1 + v3|
(v1 + v3), m3 =

1

|v1 + v2|
(v1 + v2).

We refine this triangle by the simple procedure of connecting the midpoints of the three sides
with geodesic arc and building four smaller spherical triangles denoted by Kj, j = 1, . . . , 4
with vertices

{v1,m2,m3}, {v2,m3,m1}, {v3,m1,m2}, {m1,m2,m3}
(see Figure 2).

K

K3

K4

K1

K2

Figure 2: Subdiving the spherical triangle in four

If we consider this refinement of K and if we apply the simple barycentre rule I0 on each
subtriangle, we can define

I1(ψ, K) :=
4∑

j=1

I0(ψ, Kj) ≈
∫

K

ψ. (4)

In fact, generalizing this idea, we can construct a sequence of approximations

I2(ψ, K) :=
4∑

j=1

I1(ψ, Kj),

...

IN(ψ, K) :=
4∑

j=1

IN−1(ψ, Kj).
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Subdividing each new triangle Kj, j = 1, . . . , 4 into four smaller ones by the same procedure,
we obtain a triangulation with 16 elements. If we consider this triangulation of K and we sum
the approximations obtained with the simple rule I0 on each these triangles, the result is the
same that we directly apply the compound rule I2 on K.

In general, we can subdivide K repeatedly over and over again, N times in all. Like this,
we generate an almost uniform triangulation of the original triangle K with 4N elements that
we denote by TN . In this case,

IN(ψ, K) =
∑

T∈TN

I0(ψ, T ). (5)

This kind of subdivision appears originally in [3] and provides triangles with very regular
shapes and almost uniform areas. This subdivision can be iterated to generate a kind of non–
smooth spherical barycentric coordinates (see [3] and [1]) which have some very interesting
properties. There is a much simpler option, based on simply transferring a uniform triangulation
of K̂ onto K by the mapping g. This alternative way of triangulating K gives much wider
triangles in the interior and very small ones near the vertices and is, therefore, not very well
suited for almost-uniform approximation.

We base our exposition simply on the barycenter rule although many of the ideas could be
transferred to more complicated rules on triangles (see [2] and [4]).

§4. Analysis of the error

For the construction of IN we have basically used three facts: the parameterization of any
spherical triangle from K̂, the two-dimensional barycentre rule and the subdivision of K to
generate the triangulation. Out of those characteristics, we can think that the compound rule
in the space IN is equivalent to applying some composite quadrature rule on the reference
triangle, and thus, we could try to analyse the asymptotic behaviour in a similar way as in
(see [5] for compound rules on K̂ and their full asymptotic behaviour). Things are however
somewhat more complicated. If we use the inverse of g : K̂ → K to map the compound
integration rule onto K̂ we obtain a non–uniform partition of K̂ and a full asymptotic analysis
(including a posteriori error estimates) does not follow from simple arguments. Our approach
for a full theoretical justification of the arguments we are going to expose here will be that of
mapping the barycenters of a uniform triangulation of K̂ to the quadrature nodes of the rule
IN via a continuous piecewise smooth function and put the stress on studying this sequence of
mappings from K̂ onto K.

Let N be the number of times that we have refined the original triangle K, that is, we have
subdivided each side into 2N pieces. We denote

h := 2−N .

It can be seen that [1]
h ≈ diam(T ), ∀T ∈ TN , (6)

and that the area of each triangle T is also equivalent to h2.
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Theorem 1. For ψ smooth enough∣∣∣∣IN(ψ, K)−
∫

K

ψ

∣∣∣∣ ≤ C(ψ, K) h2.

Proof. The proof follows from standard arguments of two–dimensional quadrature rules and
bounds on the subdivision procedure similar to those that serve to prove (6). The quantity
C(ψ, K) is shown to depend on derivatives of ψ up to order two.

It is our belief that the bound of the error can be made very sharp and that we can obtain a
beginning of an asymptotic expansion of the error, such as the following one.

Conjecture 2. For ψ smooth enough

IN(ψ, K)−
∫

K

ψ = h2C(ψ, K) +O(h4).

We now give some numerical evidence of this and refer to [1] for analysis. If this conjecture
holds true, we have

IN(ψ, Kj)−
∫

Kj

ψ =
h2

4
C(ψ, Kj) +O(h4), j = 1, . . . , 4.

Then,
4∑

j=1

IN(ψ, Kj)−
∫

K

ψ =
h2

4

4∑
j=1

C(ψ, Kj) +O(h4)

with
4∑

j=1

C(ψ, Kj) ≈ C(ψ, K).

Therefore,
IN(ψ, K)−

∫
K

ψ = h2C(ψ, K) +O(h4),

IN+1(ψ, K)−
∫

K
ψ =

h2

4
C(ψ, K) +O(h4)

and we would observe an increase of the order of convergence using Richardson extrapolation,
i.e, [

4

3
IN+1(ψ, K)− 1

3
IN(ψ, K)

]
−
∫

K

ψ = O(h4). (7)

Assuming the existence of more terms in the error expansion of Conjecture 2, we can consider
(4/3)IN+1 − (1/3)IN as quadrature rule and use again Richardson extrapolation to obtain

16

15

[
4

3
IN+2 −

1

3
IN+1

]
− 1

15

[
4

3
IN+1 −

1

3
IN

]
−
∫

K

ψ = O(h6). (8)

The following examples show some numerical evidence of these facts. In the first example, we
are going to approximate the area of one octant of S2. In the second, we integrate ψ(x, y, z) =
yz on the spherical triangle with vertices (1, 0, 0), (1/

√
2, 1/

√
2, 0), and (0, 0, 1). In both cases,

the errors expected with each rule are: order 2 for (5), order 4 for (7) and order 6 for (8).
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Figure 3: Behaviour of the errors with the rules (5), (7) and (8) in Examples # 1 and # 2,
respectively

N / # extrap 0 1 2 0 1 2
0 2.13(-1) 3.99(-3) 9.34(-6) 1.61(-2) 2.26(-4) 1.60(-8)
1 5.04(-2) 2.58(-4) 1.40(-7) 3.87(-3) 1.41(-5) 1.96(-10)
2 1.24(-2) 1.63(-5) 2.13(-9) 9.56(-4) 8.81(-7) 5.24(-12)
3 3.08(-3) 1.02(-6) 3.31(-11) 2.38(-4) 5.50(-8) 9.13(-14)
4 7.71(-4) 6.38(-8) 5.15(-13) 5.95(-5) 3.44(-9) 1.39(-15)
5 1.92(-4) 3.98(-9) 1.09(-14) 1.49(-5) 2.15(-10) 1.39(-16)
6 4.82(-5) 2.49(-10) 3.72(-6) 1.34(-11)
7 1.20(-5) 9.30(-7)

Table 1: Errors with the rules (5), (7) and (8) in Examples # 1 and # 2, respectively. No-
tice that Richardson extrapolation not only improves the order of the method (accelerates its
convergence) but also reduces errors significantly.

We also show some experiment based upon the three-vertices formula as basic rule, i.e.,

I0(ψ, K) :=
1

6

3∑
i=1

σ(v̂i) ψ(g(v̂i))

with v̂i the vertices of reference triangle K̂. This is the two-dimensional equivalent to one-
dimensional trapezoidal rule. It has the same order as the barycenter rule adapted to the sphere.
Results on Examples # 1 and # 2 are show in table 2.

In figure 4, we show together the results for both the barycenter and the three-vertices rules
on Examples # 1 and # 2. As happens with the original plane rules, the midpoint one has a
better performance.
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N / # extrap 0 1 2 0 1 2
0 4.67(-1) 2.98(-2) 3.74(-4) 3.83(-2) 1.80(-3) 1.34(-5)
1 1.39(-1) 2.21(-3) 6.76(-6) 1.09(-2) 1.25(-4) 2.25(-7)
2 3.64(-2) 1.45(-4) 1.10(-7) 2.82(-3) 8.02(-6) 3.57(-9)
3 9.22(-3) 9.14(-6) 1.73(-9) 7.12(-4) 5.05(-7) 5.60(-11)
4 2.31(-3) 5.73(-7) 2.70(-11) 1.78(-4) 3.16(-8) 8.77(-13)
5 5.78(-4) 3.58(-8) 4.25(-13) 4.46(-5) 1.98(-9) 1.32(-14)
6 1.45(-4) 2.24(-9) 1.12(-5) 1.24(-10)
7 3.61(-5) 2.79(-6)

Table 2: Errors with the rules (5), (7) and (8) in Examples # 1 and # 2, respectively when we
take the three-vertices formula as I0
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Figure 4: Comparison of the errors using the three vertices and barycentre formulas as basic
rules in (5), (7) and (8) in Examples # 1 and # 2, respectively

§5. Adaptive method

The beginning of an asymptotic series relies heavily on the definition of h = 2−N , where N is
the number of times we have subdivided the original triangle. If we work with K1, K2, K3, K4,
it will happen that

4∑
j=1

C(ψ, Kj) ≈ C(ψ, K)

so we will be able to begin at refined levels taking the same point of reference (the large initial
triangle). We can then cancel the term

∫
K

ψ in the ‘asymptotic expansion’ and take

E(ψ, K) :=
4

3
[I1(ψ, K)− I0(ψ, K)] ≈ C(ψ, K)

as a posteriori estimate of the error that has been committed on each triangle.
This allows to design an adaptive compound rule to approximate (2) which be resumed in

this code:
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begin with a trivial triangulation of the polygon
for n = 1 : maxNumRefinements

for K ∈ Triangulation
compute I0(K), I1(K), E(K) (a)

end
if |∑K E(K)| < Tol |∑K I0(K)| stop
decide which triangles concentrate more error (b)
for K ∈ List_Of_Triangles_To_Refine

compute midpoints of the sides
add 4 new triangles and delete K

end
end

Remark 1. The computations in (a) can be reduced to the newly created triangles. If carefully
done, we can even avoid computing I0(K), by using information of I1(K) at the finer level.

Remark 2. In (b) we can use the following criterion

|E(K)| > γ

#Triang

∑
T

|E(T )|

for some parameter γ ≥ 1. Some other criteria can be used by following widely employed
methods in FEM literature and in one–dimensional adaptive quadrature.

We have programmed this quadrature formula using MATLAB and applied it to two new
examples, which have an peak in some points. In Example #3 we consider

ψ(x, y, z) =
1

x2 + y2 + (z − 1.2)2

and we choice γ = 1.5 and Tol=10−3. Example #4 corresponds to

ψ(x, y, z) =
1

(x− 0.4)2 + (y − 0.4)2 + (z − 0.4)2
+

1

x2 + y2 + (z − 0.8)2

and we take the same tolerance but γ = 1. The integration domain is the first octant in both
cases.

The following figures show the adaptive triangulations obtained with the proposed rule
taking the barycenter formula as I0. It can be observed that the results agree with could be
expected a priori. In the figures we have drawn the plane triangles subtended by the spherical
ones, so a crack can be seen when the refining level of adjacent triangles is different.
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Figure 5: Two different views of adaptive polyhedric triangulation for the Example #3
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