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DEFORMATION AND DRAPE OF A PIECE OF

FABRIC, SUBJECTED TO A FORCE FIELD

Pierre Puiseux

Part I

The problem, modelisation
§1. Hypothesis, notations

Let N be a set of n nodes or masses numbered in Rd (here d = 2 or 3). For simplicity,
nodes are noted indifferently i or ni, to compound a node and it’s number. With no ambiguity,
notations for the set N and its cardinal are identical.

• Each node i has a set V∗
i ⊂ N of neighbors we shall note

Vi = V∗
i ∪ {i}

• Each node i is bounded to its neighbors through springs Rij with variable stiffness kij .

• Each node i is submitted to an external force Fi, i ∈ N , (possibly zero).

• ∀i ∈ N let us denote by

Xi = (xi, yi, zi) ∈ R3

the ith node generic position (say at one iteration or at generic time step).
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• for all (i, j) ∈ N 2, vector
−−−→
XiXj wil be denoted

Xij = Xj −Xj

X0
ij = X0

j −X0
j

• The notation

X00
i =

(
x00

i , y00
i , z00

i

)
∈ R3

is set for let’s position at equilibrium, without any external force, each springs being at
its reference length.

• Let

X0
i =

(
x0

i , y
0
i , z

0
i

)
∈ R3

be ith node initial position .

• Let us suppose

∀i ∈ N , X00
i = X0

i

• spring reference length is given by distances∣∣X00
ij

∣∣ =
∣∣X00

j −X00
i

∣∣ , 1 ≤ i, j ≤ N

• For 1 ≤ i ≤ N , j ∈ Vi, spring Rij (stiffness kij) acts on node i through a force denoted
Φij , directed by normalized vector uij =

Xij

|Xij | , from i to j . This force is proportional to

elongation |Xij| −
∣∣X00

ij

∣∣ and verifies :

Φij (X) = kij

(
|Xij| −

∣∣X00
ij

∣∣) Xij

|Xij|
(1)

= kijXij

(
1−
∣∣X00

ij

∣∣
|Xij|

)
(2)
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• Partition of N : let us suppose some nodes have a fixed position,

– D is the set of fixed nodes (or Dirichlet nodes) and

– L = N \ D is the set of other nodes (free nodes).

– so that, set N has a natural partition1:

N = L ∪ D (3)

variables are therefore partitioned the same way :

X = (XL, XD)

F = (FL, FD)

• Then, for each node, i, we know :

– even its position

Xi = X0
i if i ∈ D (4)

– or external force acting on it

Fi = F 0
i if i ∈ L (5)

• Unknowns are free nodes positions Xi, i ∈ L and external forces for fixed nodes
Fi (X) , i ∈ D (support reactions).

§2. Set of equations

2.1. for a node

t ∈ R+ is time, and G ∈ R3 is N ’s center of mass. Let us assume movement is submitted to
viscous forces. More precisely, a particle with speed Ẋ (t) is submitted to the viscous force
−βẊ (t) , β > 0.

The dynamic fundamental law applied to node i can be written :∑
j∈V∗

i

Φij (X (t)) + Fi (X (t))− βẊi (t) = miẌi (t) (6)

Using Φij expression [1], leads to, for each node i :

∀i ∈ N , miẌi =
∑
j∈V∗

i

kijXij

(
1−
∣∣X00

ij

∣∣
|Xij|

)
+ Fi − βẊi

=
∑
j∈V∗

i

kij (Xj −Xi)

(
1−
∣∣X00

ij

∣∣
|Xij|

)
+ Fi − βẊi

therefore

∀i ∈ N , miẌi =
∑
j∈V∗

i

kij

(
1−
∣∣X00

ij

∣∣
|Xij|

)
Xj −

⎛⎝∑
j∈V∗

i

kij

(
1−
∣∣X00

ij

∣∣
|Xij|

)⎞⎠Xi + Fi− βẊi (7)

1We could consider some node free for certain directionOx for instance, and fixed for others directions. In this
case, we have three natural partitions of N = Lx ∪ Dx = Ly ∪ Dy = Lz ∪ Dz
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2.2. Matrix formulation

Let us denote A0 = A (X00) where A (X) ∈ RN ,N is given by :

Aij (X) = −kij

∣∣X00
ij

∣∣
|Xij|

if i �= j

=
∑
l∈V∗

i

kil
|X00

il |
|Xil|

if i = j

and

A (X) =

⎛⎝ A (X) 0 0
0 A (X) 0
0 0 A (X)

⎞⎠ ∈ R3N ,3N

Fundamental equation [7] becomes :

A (X) X − A0X + F (X) = MẌ + βẊ (8)

where

M =

⎛⎝ M 0 0
0 M 0
0 0 M

⎞⎠ ∈ R3N ,3N

with M = diag (mi, i ∈ N ) ∈ RN ,N is the elementary masses diagonal matrix.
This non linear system [8] can be split into three equations uncoupled : we denote

X = (x, y, z)t ∈
(
RN )3

F = (f, g, h)t ∈
(
RN )3

so we obtain :
A (X) x− A0x + f (X) = Mẍ + βẋ
A (X) y − A0y + g (X) = Mÿ + βẏ
A (X) z − A0z + h (X) = Mz̈ + βż

(9)

2.3. A (X) matrices properties

Node’s partition (3) gives matrices A0 et A (X) a bloc expression, following template :

A =

(
AL ALD
ADL AD

)
(10)

Notice that ALD = At
DL because A0 and A (X) are symmetrical. Moreover, some properties

hold :
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properties :

• A (X) is non invertible matrix, and (1, 1, ...., 1)t ∈ Ker (A (X))

• A (X) is positive : ∀u ∈ RN , 〈A (X) .u, u〉 ≥ 0

• 0 ∈ Sp (A (X)) ⊂ R+

• A0
L is invertible because it is strongly diagonal dominant, if D �= ∅.

• A0
L is symmetric positive definite.

Proof. A (X) is symmetric, so spectrum of A (X) is real. Relation Aii (X) = −∑j∈V∗
i
Aij (X)

shows that (1, 1, ...., 1)t is an eigenvector associated to eigenvalue 0. So A is not invertible.
Moreover ∀j ∈ V∗

i , Aij (X) < 0 and Aii (X) > 0 so ri = |Aii (X)| =∑j∈V∗
i
|Aij (X)|

ith Gershgorin disk is

Di = {z ∈ C, |z − Aii (X)| ≤ ri}
= {z ∈ C, |z − ri| ≤ ri}

Spectrum of A is included (Gershgorin’s theorem) in D =
⋃

i Di, so Sp (A (X)) ⊂ R+.
IfD �= ∅matrix A0

L is not equal to A0 and when suppressing rows and columns from A0, we
suppress coefficients A0

ij < 0, so that equality A0
ii = −∑j∈V∗

i
A0

ij becomes strict inequality A0
L

: |(A0
L)ii| >

∑
j∈V∗

i ,j /∈D

∣∣∣(A0
L)ij

∣∣∣. So, matrix A0
L is strongly diagonal dominant, consequently,

it is positive definite.

Expression of (9) by blocs Let us now examine each term in equations (9) :
Rewriting first equation (9) by bloc, following partition N = L ∪ D, we obtain :

[A (X) x]L −
[
A0x
]
L + fL (X) = [Mẍ + βẋ]L

[A (X) x]D −
[
A0x
]
D + fD (X) = [Mẍ + βẋ]D

Now, A has a bloc expression we can use here and, using conditions (4 et 5), we can write :

[A (X) x]L − A0
LxL − A0

LDx00
D + f 0

L = MLẍL + βẋL (11)

[A (X) x]D −
[
A0x
]
D + fD (X) = 0 (12)

Part II

Resolution
§3. Solving equilibrium equations

On equilibrium, Ẋ= (ẋ, ẏ, ż) = 0 and Ẍ = (ẍ, ÿ, z̈) = 0. Moreover equation (8) :

A (X) X − A0X + F (X) = 0
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suggests a fix point algorithm looking like :

A0Xn+1 = AnXn + F n

Of course, A0 isn’t invertible, so we have to use bloc equations (11,12), which allows us to
compute unknowns xL et fD

[A (X) x]L − A0
LxL − A0

LDx00
D + f 0

L = 0 (13)

[A (X) x]D −
[
A0x
]
D + fD (X) = 0 (14)

and we use suggested fix point algorithm only on first equation, the second one directly gives a
value for fD. By this way, equations rewrites :

xn+1
L =

(
A0

L
)−1 (

[Anxn]L − A0
LDx00

D + f 0
L
)

fn+1
D =

[
An+1xn+1

]
D −
[
A0xn+1

]
D

3.1. Algorithm

Equilibrium algorithm
given reference positions (x, y, z) =

(
x00, y00, z00

)
initial positions (x, y, z) =

(
x0, y0, z0

)
=
(
x00, y00, z00

)
assembly A0,A = A0

given (f, g, h) =
(
f0, g0, h0

)
internal forces (ϕ, ψ, θ) = (0, 0, 0)
residualforces (Rx, Ry, Rz) = (f, g, h) + (ϕ, ψ, θ)
r0 = ‖Rx‖2 + ‖Ry‖2 + ‖Rz‖2
while (r/r0 > ε)

solve

A0
Lx = (Rx)L

A0
Ly = (Ry)L

A0
Lz = (Rz)L

assemble A

internal forces (ϕ, ψ, θ) = (Ax,Ay, Az)−
(
A0x,A0y, A0z

)
external forces (f, g, h)D = − (ϕ, ψ, θ)D

residual forces (Rx, Ry, Rz) = (f, g, h) + (ϕ, ψ, θ)
residual r = ‖Rx‖2 + ‖Ry‖2 + ‖Rz‖2

end while

This algorithm (see 4.1) reveals a slow but very stable behavior.

§4. Solving dynamic equations

In this part, we are interested on the same problem, from a dynamical point of view.
Dynamic equations are known, see [8] et [9]. In this case, of course Ẋ= (ẋ, ẏ, ż) �= 0 et

Ẍ = (ẍ, ÿ, z̈) �= 0
Fix point algorithm used for computing equilibrium, show to be very stable, therefore, we

try slight modifications to take into account inertial and viscosity terms. A time step dt and an
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integer n are given, we approach Ẋ (n.dt) := Ẋn and Ẍ (n.dt) := Ẍn with order 2 central
finite differences :

Ẋn =
Xn+1 −Xn−1

2dt
+ O
(
dt2
)

Ẍn =
Xn+1 − 2Xn + Xn−1

dt2
+ O
(
dt2
)

Fixed point idea that drove us until now can be extended as follow :

Anxn − A0xn+1 + fn = 0

becomes

Anxn − A0xn+1 + fn = Mẍn + βẋn

therefore

A0xn+1 = Anxn + fn − M

dt2
(
xn+1 − 2xn + xn−1

)
− β

2dt

(
xn+1 − xn−1

)
or :

(
A0 +

M

dt2
+

β

2dt
I

)
xn+1 = Anxn + fn +

M

dt2
(
2xn − xn−1

)
+

β

2dt
xn−1 (15)

We make the same block decomposition (see,10), applied to matrix A0 + M
dt2

+ β
2dt

I . Nu-
merical results are given in : 4.3

Part III

Numerical results

4.1. 2D numerical results at equilibrium

Stopping criterion is related to residual euclidean norms ratio : rn

r0 < 10−4 with
rn = ‖(A0 − An) Xn + F (X)‖2.
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4.1.1. A piece of fabric (2D)

(a) position ini-
tiale et filet dé-
formé

(b) Log du résidu

Figure 1: A piece of fabric (8X8 nodes) with uniform force field on a portion of the boundary
(iteration 41).

Figure 2: A piece of fabric (15X15 nodes) with non uniform force field on portions of the
boundary.

In the simulation that follows, with the same conditions, a non elastic behavior has been im-
posed on the material. Elasticity coefficients depend on kij sign of |Xij| −

∣∣X00
ij

∣∣:
• kij > 0 si |Xij| >

∣∣X00
ij

∣∣ (elastic under elongation) and

• kij = 0 si |Xij| ≤
∣∣X00

ij

∣∣ (no resistance under compression).

Notice that this simulation produces images with a realistic 3D appearance, while execution
times are drastically reduced if compared with a real 3D simulation.
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Figure 3: A piece of fabric (15X15 nodes) with non uniform force field on portions of the
boundary.

4.1.2. Profile of a paraglider (2D)

Figure 4: profile deformation : fixed trailing edge.

Figure 5: profile deformation : free trailing edge.
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4.2. Equilibrium, numerical results (3D).

Figure 6: Test case 1 : a piece of fabric (15X15 nodes) subject to its own weight and weighted
in its lower boundary, fixed in its upper boundary. Realistic undulations can be seen at the
lower part of the fabric. (Like the drape of a curtain).

Figure 7: Test case 2 : the same piece of fabric without weight, an external force pulls on a
border, the opposite border is fixed.
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Figure 8: Test case 2 : the same piece of fabric without weight, an external force pulls on a
corner, the opposite corner is fixed.

Figure 9: Test case 2 : the same piece of fabric submitted to its own weight, two opposite
borders are fixed.

Figure 10: Test case 5 : two views of the same material, hanged on a corner, submitted to its
own weight. At equilibrium, the solution is probably not unique.
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4.3. Dynamic, numerical results (3D)

4.3.1. Test case 2

Figure 11: The piece of fabric is submitted to a 3 Newtons force distributed on 3 nodes on a
border, and fixed on the opposite border, and finally subjected to its own weight.

Caracteristics

• t ∈ [0, 25] , ε = 10−5

• mt = 225 g,Ki =

⎡⎣ 3.5 10.5 3.5
7 ∗ 7

3.5 10.5 3.5

⎤⎦
• stopping criterium : wc < ε2 or t > tmax or r < ε

dt β it r tfinal wc wcg

5.0 0 5 1.5e− 2 25 3.5e− 06 2.7e− 06
0.5 0 50 3.0e− 3 25 5.0e− 07 5.1e− 08
0.05 0 500 1.9e− 4 25 5.2e− 9 2.8e− 11
0.01 0 1868 3.13e− 5 18.7 1.0e− 12 4.9e− 15
0.005 0 3140 1.0e− 5 18 2.2e− 08 2.7e− 11
0.001 0 12474 9.9e− 06 12.5 7.6e− 06 5.6e− 06

5.0 10−3 5 1.5e− 2 25 3.5e− 6 2.7e− 06
0.5 10−3 50 3.0e− 3 25 5.1e− 7 5.2e− 8
0.05 10−3 500 1.9e− 4 25 5.3e− 9 2.9e− 11
0.01 10−3 1656 2.1e− 5 16.6 1.0e− 10 1.5e− 14

0.05 10−6 500 1.9e− 4 25.0 5.2e− 09 2.7e− 11
0.01 10−6 1868 2.1e− 05 18.7 1.0e− 10 4.9e− 15
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Kinetic energy as a function of time

Figure 12: Test case 2, total kinetic energy as a function of time, for various values of time step
and of damping coefficient.

4.3.2. Test case tombe1

Figure 12: Test case “tombe 1”, two views, kinetic energy history for various values of time
step.
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