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COMPRESSIBLE AIRFLOW AROUND A

GENERIC AIRSHIP
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Abstract. The numerical simulation of low Mach compressible flows around a generic
airship is investigated using a Godunov-like numerical method. The hyperbolic differen-
tial problem -the three-dimensional Euler equations- is solved on unstructured meshes by
a finite volume scheme based on Roe’s upwind scheme [7] and Turkel’s low Mach pre-
conditioner [12, 5, 9, 10]. The effects of artificial viscosity and preconditioning on the
computation of Drag and Lift coefficients are investigated. The classical Roe’s scheme and
its low Mach preconditioned variant are both considered using a sequence of three meshes
of different fineness for solutions comparison and convergence. The numerical results
show the preponderant part played by the low Mach preconditioner in terms of accuracy
and robustness when very subsonic flows are considered, and the importance of using a
small amount of numerical dissipation.
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§1. Introduction

The prediction of aerodynamic forces is an important component in the study of airships. It al-
lows, among others, to obtain some external informations for improving shape quality, adapting
propulsion systems or to anticipate too large aeroelastic effects. In order to perform numerical
simulations of flows around airships, a 6:1 prolate spheroid is chosen as reference configura-
tion. One of the main difficulties in simulating compressible flows around airships is the low
speed of the flow. When very subsonic compressible flows are solved by Godunov-like nu-
merical methods, it becomes necessary to introduce a low Mach preconditioner. It consists in
preconditioning the numerical dissipation in order to equilibrate the convective speed and the
speed of sound, making them of the same order of magnitude, while the temporal and centered
terms of the approximation remain unchanged. Then, the convergence to the steady state and
the solution accuracy of the resulting preconditioned scheme are improved.
In the numerical simulations presented in this paper, the flow is considered non viscous and



510 Yacine Bentaleb, Eric Schall, Bruno Koobus and Mohamed Amara

the hyperbolic differential problem defined by the Euler equations is solved on unstructured
meshes by a finite volume method [3]. The differential equations are integrated over control
volumes built from a finite element mesh, and across their interfaces an approximate Riemann
solver based on Roe’s scheme [7] with Turkel’s low Mach preconditioner [12, 5, 9, 10] is used
to evaluate the convective fluxes.
In this work, we are looking for the steady state solution around a prolate spheroid correspond-
ing to an inflow Mach number of 0.1 and an angle of attack set to 5 degrees. Since the artificial
viscosity is modified whereas the physical viscous effects are voluntarily neglected as a first
approach, taking into account the contribution of the pressure force only, we propose to study
the effects of the numerical dissipation on the evaluation of the aerodynamic coefficients with
Roe’s scheme and its low Mach preconditioned variant.
The remainder of this paper is organized as follows:
In Section 2, the governing equations are given. The numerical methodology is briefly de-
scribed in Section 3. The test cases and the numerical results are presented in Section 4. Finally,
we conclude this paper in Section 5.

§2. Governing equations

The three-dimensional Euler equations for fluid mechanics can be written in the following
conservative form

∂W

∂t
+∇ · F(W ) = 0 t > 0 and x ∈ Ω (1)

W (x, 0) = W0(x) x ∈ Ω

where the conservative variable W and the inviscid flux vector F = (F, G, H)T are given by

W = (ρ, ρu, ρv, ρw,E)T

F (W ) = (ρu, ρu2 + p, ρuv + p, ρuw + p, u(E + p))T

G(W ) = (ρv, ρuv + p, ρv2 + p, ρvw + p, v(E + p))T

H(W ) = (ρw, ρuw + p, ρvw + p, ρw2 + p, w(E + p))T

in which ρ denotes the density, u, v et w are the components of the velocity, and E is the total
energy per unit volume. The following state equation for perfect gas connects the pressure p to
the conservative variables and allows to close the system

p = (γ − 1)

(
E − 1

2
ρ(u2 + v2 + w2)

)
The ratio of the specific heats γ is fixed to 1.4.

For what concerns the boundary conditions, slip conditions are imposed on the body surface
(here the prolate spheroid), and a representative far-field of the flow outside the computational
domain is given.
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§3. Numerical methodology

The spatial discretization of the Euler equations (1) is carried out here on an unstructured
tetrahedral mesh from which a dual mesh defined by control volumes is derived (Fig. 1). The

Figure 1: Control volume attached to vertex i in two dimensions.

convective fluxes are approximated by a finite volume method [3] in which the discretized
solution is piecewise constant over each control volume. More specifically, Roe’s upwind
scheme with Turkel’s low Mach preconditioner is used. The resulting scheme is refered as
Roe-Turkel’s scheme in the following. The convective fluxes are then approximated on the
boundary of each control volume Ci attached to a vertex i as follows∫

∂Ci

F(W ) · n dΓ =
∑

j∈V (i)

Φ(Wi, Wj, νij)

where n is the outer unit normal to the control volume Ci and νij =
∫

∂Ci∩∂Cj
n dΓ, V (i)

denotes the set of neighboring nodes to vertex i and Φ(Wi, Wj, νij) are the numerical fluxes of
Roe-Turkel’s scheme given by

Φ(Wi, Wj, νij) =
F(Wi) + F(Wj)

2
· νij +

1

2
δ P−1

c | Pc Dc(W̃ , νij) | (Wi −Wj) (2)

in which W̃ denotes the Roe’s average of W , 0 < δ ≤ 1 is a real coefficient introduced to
control the numerical viscosity, and Dc is the Roe’s matrix given by

Dc(W̃ , νij) = Ac(W̃ ) (νij)x + Bc(W̃ ) (νij)y + Cc(W̃ ) (νij)z (3)

where Ac, Bc et Cc are the Jacobian matrices of the inviscid fluxes.
The preconditioning matrix Pc, proposed by Turkel [9], alter only the dissipative terms and
thus the numerical scheme remains consistant with time-dependent equations. In terms of the
entropic variables U = [p, u, v, w, ln(p/(ργ))]T , this preconditioner writes

P = Diag(α2, 1, 1, 1, 1)

where α is a parameter of the order of the reference Mach number.
Then, for the conservative variables W , the corresponding form of the preconditioner is

Pc =
∂W

∂U
P

∂U

∂W
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In order to improve the spatial approximation, second-order accuracy is obtained using the
MUSCL technique [11, 3]. The numerical fluxes are evaluated with the extrapolated values
Wij and Wji of W at the left and the right of the interface between two neighboring control
volumes Ci and Cj . Thus, only the arguments of the numerical flux Φ are modified, while its
expression (2) remains the same:∫

∂Ci

F(W ) · n dΓ =
∑

j∈V (i)

Φ(Wij, Wji, νij) (4)

The extrapolated values Wij and Wji are computed using a "β-scheme", which combines cen-
tered and fully upwind gradients as follows

Wij = Wi +
1

2

[
(1− β)(∇W )cent

ij + β(∇W )upw
ij

]
·
→
ij (5)

Wji = Wj −
1

2

[
(1− β)(∇W )cent

ji + β(∇W )upw
ji

]
·
→
ij (6)

where 0 ≤ β ≤ 1 is a parameter of upwinding.

The centered gradient associated with edge ij is defined by

(∇W )cent
ij ·

→
ij = Wj −Wi (7)

and the upwind gradients are given by

(∇W )upw
ij = (∇W ) |Tij

and (∇W )upw
ji = (∇W ) |Tji

(8)

where Tij and Tji are respectively the upstream and downstream tetrahedra associated to edge
ij (see Fig. 2 for the two-dimensional case) and (∇W ) |T denotes the P1 finite-element ap-
proximation of the gradient in tetrahedron T .

Figure 2: Upstream and downstream triangles Tij and Tji associated with edge ij.

Since the flow is subsonic, no slope-limiting procedure is used in the numerical fluxes.
For what concerns the time-integration strategy, a second-order time accurate implicit scheme is
employed. The time discretization is based on a second-order backward difference scheme. The
non-linear flow equations derived from the time-discretization are solved by a defect-correction
(Newton-like) method [2].
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§4. Numerical simulations

4.1. Test cases definition

The computations are performed on three meshes. The first one contains 33869 nodes and is
considered as the coarse mesh (Fig. 9), the second one contains about three times more nodes
while the third one contains four times more nodes and is considered as the fine mesh (Fig. 10).
The surface mesh of the prolate spheroid is an unstructured triangulation following the prolate
curvature, and the unstructured tetrahedral volume mesh connecting the bounding box to the
surface mesh is generated by the Voronoi-Delaunay method [4].
In order to investigate the effects of the numerical viscosity on the evaluation of the Drag and
the Lift coefficients, a truncation error analysis of the linear advection equation discretized on a
regular structured grid allows to estimate the order of dispersion and dissipation. This analysis
gives the first two preponderant terms (corresponding to a one-dimensional analysis for sake of
briefness)

(1− 3β) C1 ∆2
x

∂3

∂x3
(9)

δβ C2 ∆3
x

∂4

∂x4
(10)

where the parameters β and δ have been previously defined.
The third order derivative term (9) represents the dispersive error while the dissipative term
(10) is of fourth order.
The coefficient β controls the dispersion which is minimal for β = 1/3, value which is used for
most of the test cases. The artificial viscosity can then be modified through the dissipative term
and parameter δ. For our numerical study, we define a sequence of simulations by decreasing
the value of the product δβ as follows

β = 1/2
δ = 1

}
=⇒ δβ = 0.5

β = 1/3
δ = 3/4

}
=⇒ δβ = 0.25

β = 1/3
δ = 3/8

}
=⇒ δβ = 0.125

β = 1/3
δ = 3/16

}
=⇒ δβ = 0.0625

β = 1/3
δ = 3/32

}
=⇒ δβ = 0.03125

The inflow Mach number M∞ is essentially fixed to 0.1. Computations corresponding to M∞ =
0.01 are also performed in order to show the effect of preconditioning. Classical Roe’s scheme
and preconditioned Roe-Turkel’s scheme are both performed and compared. The angle of
attack is set to 5 degrees for each computation and the other reference quantities are

l = 1.37 m

ρ∞ = 1.225 kg/m3

p∞ = 101300 Pa

where l is the main length of the prolate spheroid.
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The Drag (Cx) and Lift (Cz) coefficients are defined for these computations by

Ci =
1

Sref

∫
Γ

Cp
−→n · −→i ds

−→
i = −→x ,−→y ,−→z (11)

in which Sref is a reference area (see Table 1), −→n denotes the unit normal of the surface
element, and Cp is the pressure coefficient Cp = p−p∞

1
2
ρ∞V 2∞

4.2. Numerical results

The behavior of the Drag (Cx) and Lift (Cz) coefficients with respect to different values of δβ
parameter is shown in Figs. 3 and 4 for Roe-Turkel’s scheme. As this parameter is reduced,
Cx and Cz decrease almost linearly for the three meshes. For weak values of δβ, the Lift
and Drag coefficients converge towards a rather closed value with the medium and fine grids.
Simulations were performed on the same sequence of meshes by Mezine and Abgrall using a
preconditioned LDA (Low Diffusion Advection) system scheme for solving the Euler equations
[1]. For comparison purposes, their results are also plotted in Fig. 3 (black points and squares).
With the coarse mesh, they obtain Cx = 3.96 10−3, a value which corresponds to a simulation
with Roe-Turkel’s scheme and δβ = 0.17 . With the two other finer grids, the Cx coefficients
obtained by Mezine and Abgrall correspond to values which would have been obtained by Roe-
Turkel’s scheme and δβ = 0.15.
As the behavior of the aerodynamic coefficients is linear, the retained coefficients for these
simulations are extrapolated at zero numerical viscosity which corresponds to δβ = 0. Table
1 displays these extrapolated coefficients obtained with the fine mesh for both Roe’s and Roe-
Turkel’s schemes. We can compare these values with those of Mezine and Abgrall for the same
mesh and the same reference areas.
In Fig. 5, we compare the results obtained by Roe’s and Roe-Turkel’s schemes on the chosen
sequence of meshes. The difference between the Drag coefficients corresponding to these two
schemes reduces with decreasing values of δβ parameter, and almost vanishes for the smallest
value of δβ with the medium and fine meshes. This feature is no more true when the flow
becomes very subsonic. Fig. 6 shows that even with small values of δβ, this difference remains
rather large at M∞ = 0.01. This is confirmed by the Mach number isovalues on the finest
grid in regions close to the edges for M∞ = 0.01 (Fig. 7). As expected, one can also notice
in Fig. 6 that the drag variation curve for Roe-Turkel’s scheme is similar at M∞ = 0.1 and
M∞ = 0.01, contrary to what we observe for Roe’s scheme. These results are explained by the
wrong asymptotic behavior of Roe’s scheme with small Mach number inducing in particular
an excessive viscosity on the momentum equations, drawback which is corrected by Turkel’s
preconditioner [12]. Pressure isovalues for M∞ = 0.1 are depicted in Fig. 8. We notice, with
Roe’s scheme, oscillations which do not exist when Roe-Turkel’s scheme is used. This feature
is explained by the too weak viscosity introduced on the energy equation by Roe’s scheme
for low Mach number, which induces a lack of stability of this scheme for low speed flows,
shortcoming which is corrected with Turkel’s preconditioner [12].

§5. Conclusion

In this paper, the numerical simulation of low Mach compressible flows around a generic airship
has been investigated using a finite volume method based on Roe’s upwind scheme. The flow
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Figure 3: Drag coefficient versus δβ param-
eter using the Roe-Turkel’s scheme.

Figure 4: Lift coefficient versus δβ param-
eter using the Roe-Turkel’s scheme.

Figure 5: Drag coefficient versus δβ; com-
parison between Roe’s and Roe-Turkel’s
solver.

Figure 6: Influence of preconditioning on
the Drag coefficient calculation for M∞ =
0.01.

Solver Drag coefficient Lift coefficient

Roe 1.2 10−4 1.76 10−3

Roe-Turkel 3.9 10−4 1.6 10−4

Mezine & Abgrall 1.22 10−3 5.26 10−3

Reference areas π(1.37/12)2 π(1.37)2/24

Table 1: Extrapolated Drag and Lift coefficients at zero numerical dissipation (δβ = 0) on the
fine mesh (140265 nodes). The corresponding reference areas used in expression (11) are also
given.
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Figure 7: Isovalues of the Mach number for M∞ = 0.01 and δβ = 0.125 with Roe-Turkel’s
scheme (top) and Roe’s one (bottom) on the fine mesh (140265 nodes).

Figure 8: Isovalues of the pressure for M∞ = 0.1 and δβ = 0.125 with Roe-Turkel’s scheme
(left) and Roe’s one (right) on the fine mesh (140265 nodes).
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Figure 9: Coarse volume mesh: 33869
nodes.

Figure 10: Fine volume mesh: 140265
nodes.

has been assumed non viscous and the Euler equations have been considered for this work. In
order to address the difficulty of simulating low speed flows, Turkel’s preconditioner has been
used to modify the numerical viscosity which is, in our numerics, directly controled by a real
parameter. We have studied the effects of both the preconditioner and the numerical dissipation
through this real parameter on the evaluation of the aerodynamic coefficients. For this purpose,
a sequence of three unstructured meshes of different fineness have been used. The numerical
results have shown the crucial part played by the low Mach preconditioner for the simulation of
very subsonic flows, and also the importance of using a small amount of numerical dissipation.
Preconditioning enforces the robustness and improves the accuracy of the numerical scheme at
low Mach number.
In the futur, we plan to perform the simulation of low speed turbulent viscous flows around a
generic airship with the numerical methodology used in this paper for the discretization of the
convective fluxes.
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