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ON d-PSEUDO-ORTHOGONALITY OF THE

SHEFFER SYSTEMS ASSOCIATED TO

A CONVOLUTION SEMIGROUP

Célestin C. Kokonendji

Abstract. We investigate which Sheffer polynomials can be associated to a convolu-
tion semigroup of probability measures, usually induced by a stochastic process with
stationary and independent increments. From a recent notion of d-pseudo-orthogonality
(d ∈ {2, 3, · · ·}), we characterize the associated d-pseudo-orthogonal polynomials by the
class of generating probability measures, which belongs to the natural exponential family
with polynomial variance functions of exact degree 2d − 1. This extends some results of
(classical) orthogonality; in particular, some new sets of martingales are then pointed out.
For each integer d ≥ 2 we completely illustrate polynomials with (2d−1)-term recurrence
relation for the families of positive stable processes.
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§1. Introduction

Let us specify first what we call a semigroup-Sheffer system. If both functions a(m) and b(m)
can be expanded in a formal power series such that a(0) = 0, a′(0) �= 0 and b(0) �= 0, then the
polynomial sequence {Qn(x); n ∈ N} defined by the generating function

∞∑
n=0

Qn(x)
mn

n!
= b(m) exp{xa(m)} (1)

is a Sheffer system [17]. The polynomial Qn(x) so defined is of exact degree n with Q0 �= 0.
Following Schoutens and Teugels [16], we now introduce an additional time parameter λ ∈

Λ ⊆ [0,∞) into the polynomials defined in (1) by replacing the function b(m) by {b(a(m))}λ.

Definition 1. Let Λ be a closed additive semigroup of [0,∞). A polynomial set {Qn(x; λ); n ∈
N, λ ∈ Λ} is called a semigroup-Sheffer system if it is defined by a generating function of the
form ∞∑

n=0

Qn(x; λ)
mn

n!
= {b(a(m))}λ exp{xa(m)}, (2)

where: (i) a and b are analytic in the neighborhood of m = 0; (ii) a(0) = 0, a′(0) �= 0 and
b(0) = 1; (iii) 1/b(θ) is a Laplace transform.
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Note that the quantity λ can be considered to be a (discrete) positive parameter, as such the
function Qn(x; λ) will also be polynomial in λ.

If condition (iii) of Definition 1 is satisfied, then there is a convolution semigroup of prob-
ability measures {µλ; λ ∈ Λ} defined by

Lµ(θ) =

∫
R

exp{θx}µ(dx) =
1

b(θ)
(3)

through the Laplace transform of µ = µ1. That leads necessarily to these inclusions

N ⊆ Λ ⊆ [0,∞). (4)

It is convenient to put µ0 = δ0 the Dirac mass at 0, so the set Λ∗ = Λ\{0} depends on the
generator µ = µ1 of {µλ; λ ∈ Λ}. Hence, the aim of this paper is to find the correspondence
between such a semigroup-Sheffer system and the families of associated distributions µ.

Note however that the calculation of the index set of µ, defined as

Λ∗ = Λ∗(µ) = {λ > 0;∃µλ : Lµλ
= (Lµ)λ}, (5)

can be quite complicated, even for something as simple as distribution of the sum of two
Bernoulli and negative binomial independent random variables (Letac et al. [10]). Here are two
classical examples of measures such that the inclusions (4) are strict. First, if exp{1+z−z2/4+

z3 + z4} =
∞∑

n=0

µnzn then the index set of the positive discrete measure µ(dx) =
∞∑

n=0

µnδn(dx)

is exactly Λ∗(µ) = [1/2,∞). Second, the positive measure ν(dx) =
8∑

n=0

νnδn(dx) with

(ν0 = ν8 = 1, ν1 = ν7 = 2, ν2 = ν6 = 1/2, ν3 = ν5 = 3/2, ν4 = 65/16) provides
Λ∗(ν) = {1, 3/2, 2, 5/2, 3, · · ·}.

Before giving the outline of the paper, we recall here a basic application (see Schoutens
[15]) in both discrete and continuous cases of Λ via (4). If Λ = N = {0, 1, 2, · · ·} is discrete,
we can then associate i.i.d. random variables X1, X2, · · · defined by its Laplace transform
LXi

(θ) = 1/b(θ) as in (3); and, finally, we obtain the following martingale equality

E[Qn(Sl; l)|Sk] = Qn(Sk; k), 0 ≤ k ≤ l, n ∈ N, (6)

where Sk = X1 + · · · + Xk, k ∈ N. For continuous time Λ = R+ = [0,∞), the Laplace
transform in (3) is therefore infinitely divisible (Sato [14]); and, it is also shown that

E[Qn(Xt; t)|Xs] = Qn(Xs; s), 0 ≤ s ≤ t, n ∈ N, (7)

where {Xt; t ∈ R+} is the Lévy process (i.e., stationary process with independent increments)
with the associated distributions {µt; t ∈ R+}. See Küchler and Sørensen [8] for exponential
families of stochastic processes, applicable here.

In Section 2 we provide the construction of semigroup-Sheffer system with the theory
of exponential families. In Section 3 we first associate the convolution semigroup of prob-
ability measures to any semigroup-Sheffer system. Then, we give some characterizations of
semigroup-Sheffer systems via orthogonality and its extension. Section 4 is devoted to some
concluding remarks and to interesting examples of positive stable processes.
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§2. Construction of semigroup-Sheffer systems

Let µ be a σ-finite positive measure on R (not necessarily a probability), define the cumulant
function Kµ by

Kµ(θ) = ln

∫
R

exp{θx}µ(dx) = ln Lµ(θ)

on its (canonical parameter) domain Θ = {θ ∈ R : Kµ(θ) < ∞}. Assuming that both µ and Θ
are not degenerate (i.e., µ is not concentrated at one point and the interior of Θ is not empty),
and hence Kµ is known to be strictly convex on intΘ. We denote by ψµ the inverse of the first
derivative function K ′

µ. The natural exponential family (NEF) F = F (µ) generated by µ is the
set

F = {P (m, F ); m ∈ MF = K ′
µ(intΘ)},

where each P (m,F ) is a probability distribution with mean m such that its density with respect
to µ can be written as

fµ(x; m) = exp{xψµ(m)−Kµ(ψµ(m))}. (8)

For more details, the reader can be referred to Jørgensen [4] or to the contribution of Muriel
Casalis in Kotz et al. [6, Chapter 54]. Let us recall here the following notion.

Definition 2. Two NEFs F (µ) and F (ν) are said to be of the same type if there exist an affinity
ϕ and λ ∈ Λ∗(µ) as in (5) such that ν = ϕ(µ∗λ) = ϕ(µλ), where ∗ denotes the convolution
product.

Thus, to a family of probability measures we associate a family of polynomials from the
Taylor expansion of the function fµλ

(x; m) of the form (8). The following result provides
the construction of semigroup-Sheffer systems from a convolution semigroup of probability
measures {µλ; λ ∈ Λ}.

Theorem 1. Let n ∈ N and let {µλ; λ ∈ Λ} be a convolution semigroup of probability measures
generating a type of NEF F = F (µ). Define

f (n)
µλ

(x; mλ) = ∂nfµλ
(x; m)/∂mn|m=mλ

.

Then {Qn(x; λ) = λnf
(n)
µλ (x; mλ); n ∈ N, λ ∈ Λ} form a semigroup-Sheffer system.

Proof. By induction on n, f
(n)
µλ (x; mλ) is a polynomial in x of exact degree n; and, hence,

Qn(x; λ) is also one. Since Kµλ
= λKµ and ψµλ

are analytic, it follows that, for all m in the
neighborhood of mλ, we have

∞∑
n=0

Qn(x; λ)
mn

n!
= fµλ

(x; λm + mλ)

= exp{xψµλ
(λm + mλ)− λKµ(ψµλ

(λm + mλ))}.

>From Kµλ
= λKµ, it is easily seen that mλ = λm1 and ψµλ

(m) = ψµ(m/λ). Hence (2)
occurs with a(m) = ψµ(m + m1) and b(θ) = exp{−Kµ(θ)}.
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Let us conclude this section by recalling briefly the notion of variance function for a NEF.
The variance VF of P (m, F ) is considered as a function of m = K ′

µ(θ) and is satisfied

VF (m) = K ′′
µ(θ) = 1/ψ′

µ(m) =

∫
R

(x−m)2fµ(x; m)µ(dx).

Note also that Lµ, Kµ, ψµ and VF are analytic functions in their domains and, for fixed λ ∈ Λ∗,

VF (µλ)(m) = λVF (µ)(m/λ) (9)

for m ∈ MF (µλ) = λMF (µ).
Together with the mean domain MF , the variance function VF characterizes the family F

within the class of all NEFs [11]; it does not depend on a particular generating measure, and it
presents an expression simpler than the density of P (m,F ). Among the different forms of VF

in literature, the most basic is of course the polynomial variance function with degree δ ∈ N
that, to make short, we denote by NEFs with δ-PVF:

VF (m) =
δ∑

k=0

αkm
k, αk ∈ R.

Morris [11] characterized all NEFs on R with quadratic variance functions (i.e., δ = 0, 1, 2) in
six types (normal, Poisson, gamma, binomial, negative binomial and cosine hyperbolic), which
are associated to six orthogonal Sheffer systems (Hermite, Charlier, Laguerre, Krawtchouk,
Meixner-type I and Pollaczek, respectively). All these types are infinitely divisible, except the
binomial one, whose index set is Λ∗ = N∗. The characterization of these orthogonal poly-
nomials have been obtained by different manners (e.g., Feinsilver [3]). But for an account of
particular theory of semigroup-Sheffer systems as Lévy-Sheffer (7) and i.i.d.-Sheffer (6) sys-
tems, we refer to Schoutens and Teugels [16] for univariate cases and to Pommeret [12] for
multivariate cases. When the degree of PVF is greater than or equal to 3, we cannot character-
ize by the classical orthogonal Sheffer systems; see Kokonendji [5] for univariate case with the
following extension of orthogonality and Pommeret [13] for multivariate cases with only some
terms recurrence relations.

§3. Main results with d-pseudo-orthogonality

In this section we link all semigroup-Sheffer systems to a convolution semigroup of probability
measures following the classical orthogonality. Then we investigate the family of distribu-
tions with respect to our extension of orthogonality [5], which is not the common notion of
d-orthogonality (e.g., Douak [1]).

Definition 3. Let d ∈ {2, 3, · · ·}. A sequence of real polynomials (Pn)n∈N is said d-pseudo-
orthogonal with respect to a probability measure µ (denoted µ− d-pseudo-orthogonal) if∫

R

Pn(x)Pq(x)µ(dx) = 0 for n ≥ dq, q ∈ N, and

∃q ≥ 0, n ∈ [(q + 1)/d; dq − 1] ∩ N such that

∫
R

Pn(x)Pq(x)µ(dx) �= 0.
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As discussed in [5], Definition 3 extended to d = 1 corresponds to the quasi-othogonality
of order 1. Recall that the classical µ-orthogonality is defined by

∫
Pn(x)Pq(x)µ(dx) = 0

when n �= q, and it is the quasi-orthogonality of order 0. The following theorem extends
the characterization of Lévy-Sheffer and i.i.d.-Sheffer systems of [16] to semigroup-Sheffer
systems by the classical orthogonality.

Theorem 2. Let {Qn(x; λ); n ∈ N, λ ∈ Λ} be a semigroup-Sheffer system. Then there exists a
unique convolution semigroup of probability measures {µλ; λ ∈ Λ} such that {Qn(x; λ); n ∈
N} is µλ-orthogonal, for all λ ∈ Λ.

Proof. By taking generating functions in∫
R

Qn(x; λ)Qp(x; λ)µλ(dx) = δnpcn

(δnp = 1 when n = p and 0 for n �= p) and setting n = 0 we obtain∫
R

{b(a(m))}λ exp{xa(m)}µλ(dx) = c0 = 1.

Putting a(m) = θ we have the Laplace transform of µλ∫
R

exp{θx}µλ(dx) = {b(θ)}−λ,

which characterizes of unique manner each µλ of {µλ; λ ∈ Λ}.

Obviously we have the same six systems obtained in [16], which are connected to six types
of NEFs with quadratic variance functions [11].

Before showing the two main theorems related to µ−d-pseudo-orthogonality of the semigroup-
Sheffer systems, we need here the basic and useful result of [5, Theorem 3] extending the
Feinsilver [3] characterization . It also provides the (2d − 1)-term recurrence relation of the
associated polynomials.

Lemma 3 (Kokonendji [5]). Let F be a NEF on R and µ an element of F with mean m0.
Consider the polynomials (Pn)n∈N associated to F and defined by Pn(x) = f

(n)
µ (x; m0). Then,

for all d ∈ {2, 3, · · ·}, the three following statements are equivalent: (i) (Pn)n∈N are µ − d-
pseudo-orthogonal polynomials; (ii) F is a NEF with (2d − 1)-PVF; (iii) there exist real
numbers (ak)k=0,1,···,2d−1 such that, for all n ≥ 2,

a0Pn+1(x) = [x− (na1 + m0)]Pn(x)− n[(n− 1)a2 + 1]Pn−1(x)−
2(d−1)∑
k=2

ak+1A
k+1
n Pn−k(x)

with Ak
n = n(n− 1) · · · (n− k + 1) and A0

n = 1. In this case, we have: VF (m) =
2d−1∑
k=0

ak(m−

m0)
k.

Under the assumption of µ − d-pseudo-orthogonality, the following theorem shows an in-
trinsic construction of the semigroup-Sheffer systems.
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Theorem 4. For all λ ∈ Λ, let the polynomial sequence {Pn(x; λ); n ∈ N} be a µλ−d-pseudo-
orthogonal. Then the two following statements are equivalent: (i) {Pn(x; λ); n ∈ N} form a
semigroup-Sheffer system; (ii) there exists γ ∈ R∗ such that Pn(x; λ) = (γλ)nf

(n)
µλ (x; mλ), for

all (n, λ) ∈ N× Λ.

Proof. (i) ⇐ (ii) Easy from Theorem 1.
(i) ⇒ (ii) For all λ ∈ Λ, the generating function of (Pn(x; λ))n≥0 is “exponential”; that is∑

n≥0

mn

n!
Pn(x; λ) = exp{xAλ(m) + Bλ(m)},

where both functions Aλ(m) and Bλ(m) are suitable as in (2). Hence, the desired result is
obtained in the same spirit as Theorem 4 (i ⇒ ii) of Kokonendji [5].

Now we are interested in finding out for which (class of) real measures µλ the d-pseudo-
orthogonality (d ∈ {2, 3, · · ·}) of the semigroup-Sheffer polynomials occurs.

Theorem 5. Let d ∈ {2, 3, · · ·} and let F be a NEF on R and µ an element of F with mean
m. Let {Pn(x; λ); n ∈ N, λ ∈ Λ} be a semigroup-Sheffer system associated to µ. Then, the
d-pseudo-orthogonality of the semigroup-Sheffer system occurs if and only if F (µ) is a NEF
with (2d− 1)-PVF and there exists an affinity ϕ such that a(m) = ψµ(ϕ(m)) in (2).

Proof. Assume the polynomials Pn(x; λ) are µλ − d-pseudo-orthogonal. From Theorem 4
there exist γ ∈ R∗ such that Pn(x; λ) = (γλ)nf

(n)
µλ (x; mλ) and a(m) = ψµ(ϕ(m)) and ϕ(m) =

γm + m1. To show that F is (2d − 1)-PVF we may fixe λ = 1, because the general case is
obtained by the notion of type given in Definition 2; see also (9) for the power of convolution.
Thus the remainder is easily deduced from Lemma 3.

Conversely, from the effect of the power of convolution (9) we may also use Lemma 3 to
show that polynomials Pn(x) = Pn(x; 1) are µ− d-pseudo-orthogonal for fixed λ = 1.

§4. Concluding remarks and examples

The characterization of the d-pseudo-orthogonal (d ∈ {2, 3, · · ·}) semigroup-Sheffer systems
is done globaly in term of class (or set of types) of distributions. Similar results yield for multi-
variate families by introducing this notion of d-pseudo-orthogonality in the work of Pommeret
[13]. Note that for d = 1 (quasi-orthogonality of order 1) we can only associate the Poisson dis-
tribution (or process) and then the Charlier polynomial. As consequence of martingale equality
we easily obtain the following convolution relation:

Qn(x; λ) =

∫
R

Qn(x + y; t)µt−λ(dy), 0 ≤ λ ≤ t ∈ Λ,

for all n ∈ N. When Λ = [0;∞) it can be used in stochastic integration theory or Itô integrals
(see Schoutens [15, Chapter 5] for orthogonality).

Of course there exist many NEFs with polynomial variance functions of degree 2d− 1, for
d ∈ {2, 3, · · ·}. For example to build such variance functions, we consider the Bar-Lev criterion
described in Letac and Mora [9, Corollary 3.3] as following:

VF (m) = m∆(m2)
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on MF = (0; r), where ∆ is a polynomial with non-negative coefficients and r ∈ (0;∞]. In this
case the NEF F is infinitely divisible and, hence, a generator of a Lévy process. However, it
seems hard indeed even impossible, to obtain “explicitly” their densities or cumulant functions
when the degree of VF is greater than or equal to 3 [9]. Note that the cumulant function Kµ is
necessary to the computation of our sequence polynomials, and the density or generating mea-
sure µ is important to precise the d-pseudo-orthogonality with respect to this µ. The calculation
of the sequence polynomials Pn(x; mλ) can be done by means of the Faà di Bruno formula [7]
as follows:

Pn(x; λ) =
∑

k1+2k2+···+nkn=n

n!

k1! · · · kn!

n∏
j=1

(
∂j

∂mj
[xψµλ

(m)−Kµλ
(ψµλ

(m))]|m=mλ

)kj

.

(10)
We conclude this paper by explaining the interesting cases from positive stable processes,

which are Lévy processes generated by probability measures

µα,t(dx) =
dx

πx

∞∑
k=1

(α− 1)kΓ(1 + αk)

k!αkt−k

( −1

(α− 1)x

)αk

sin(−kπα), x > 0,

where 0 < α < 1 and t > 0; see Feller [2] for basic properties. Note that for α ∈ [1; 2] it
is defined a family of stable distributions concentrated on the real line R where special cases
are Gaussian (α = 2) and Cauchy (α = 1) distributions. Instead of the stability index α, it is
convenient to introduce the “power” parameter p, defined by

(p− 1)(1− α) = 1;

that means p > 2 for 0 < α < 1. The well-known special case of positive stable families is the
Lévy or inverse Gaussian distribution, which corresponds to p = 3 or α = 1/2, with

µ1/2,t(dx) =
dx√
2πx3

t exp{−t2/(2x)}, x > 0.

For fixed p > 2 (or 0 < α < 1) and t > 0, the infinitely divisible NEF Fp,t = F (µα,t) gen-
erated by µα,t is such that Θ(µα,t) = (−∞; 0], Kµα,t(θ) = t(α−1)[θ/(α−1)]α/α, ψµα,t(m) =
(α − 1)(m/t)1/(α−1) = (m/t)1−p/(1 − p), and VFp,t(m) = mpt1−p on MFp,t = (0;∞); see
Jørgensen [4, Chapter 4] for the complete classification with p ∈ R.

Hence, for all p = 2d − 1 with d ∈ {2, 3, · · ·}, we associate to the NEF Fp,t = F (µα,t)
the sequence of µα,t − d-pseudo-orthogonal polynomials (Pn(x; mt))n≥0, which the general
expression is obtained from (10) as

Pn(x; t) =
∑

k1+2k2+···+nkn=n

n!tn(2d−2)

k1! · · · kn!

n∏
j=1

(
x
m2−2d−j

t Aj
2−2d

2− 2d
− m3−2d−j

t Aj
3−2d

3− 2d

)kj

,

for any mt > 0, where Aj
k = k(k − 1) · · · (k − j + 1) with A0

k = 1.
Taking simply mt = 1 = t and then, for all d ∈ {2, 3, · · ·},

VF2d−1
(m) = m2d−1 =

2d−1∑
k=0

Ak
2d−1

k!
(m− 1)k,
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the (2d− 1)-order recurrence relation (Lemma 3 (iii)) is given by

Pk+2d−1(x; 1) = (x− A1
k+2d−2A

1
2d−1 − 1)Pk+2d−2(x; 1)−

(k + 2d− 2 + A2
k+2d−2A

2
2d−1/2)Pk+2d−3(x; 1)

−
2d−4∑
τ=0

Aτ+3
k+2d−2A

τ+3
2d−1

(τ + 3)!
Pk+2d−4−τ (x; 1), k ≥ 0,

with the initial conditions:

P0(x; 1) = 1, P1(x; 1) = x− 1, P2(x; 1) = x2 − 5x + 3, and

Pj(x; 1) = (x− A1
j−1A

1
2d−1 − 1)Pj−1(x; 1)− (j − 1 + A2

j−1A
2
2d−1/2)Pj−2(x; 1)

−
j−3∑
τ=0

Aτ+3
j−2−τA

τ+3
2d−1

(τ + 3)!
Pj−3−τ (x; 1), j = 3, · · · , 2d− 2.

When d = 2, we have the results corresponding to the Lévy case.
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