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GENERALIZATION OF THE PIECEWISE

POLYNOMIAL INTERPOLATION BY

FRACTAL FUNCTIONS
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Abstract. The fractal interpolation functions defined by iterated function systems provide
new methods of approximation and quantification of experimental data. The polynomial
fractal functions can be considered as generalization of the piecewise polynomial inter-
polants. Assuming some hypotheses on the original function, a bound of the representation
of the error for this kind of approximants is obtained here. The results proved guarantee the
convergence of the interpolant to any smooth function when the diameter of the partition
approaches zero. The property of good fit of the derivatives is also verified if the iterated
function system is adequately chosen.
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§1. Introduction

The approximation and quantification of experimental data can be envisaged in the light of
fractal interpolation functions defined by iterated functions systems ([1]). In the article of
M.F. Barnsley ([2]), the moments of an experimental signal are computed by explicit formulae
involving the coefficients of the iterated functions systems defining the function. A moment
of any order can be used as an index of the signal, to perform comparisons and quantified
measures.

As proved in the paper of M.F. Barnsley & A.N. Harrington ([3]), the polynomial fractal
interpolation functions can be integrated indefinitely and smooth functions generalizing splines
can be obtained. The main difference with the classic procedures resides in the definition by a
functional relation assuming a self-similarity on small scales. In this way, the interpolants are
defined as fixed points of maps between spaces of functions. The properties of these correspon-
dences allow to deduce some inequalities that express the sensitivity of the functions and their
derivatives to those changes in the parameters defining them ([4]).

In the particular case of polynomial fractal interpolation functions, the method can be con-
sidered as generalization of splines of the same kind. Some bounds of the error interpolation
by odd degree polynomial fractal interpolation functions are obtained.

If the polynomials are of degree 2m − 1, the bounds range from the function up to the
(2m − 2)th derivative. The degree of regularity required for the function being approximated
is lightly superior to the chosen interpolant.
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§2. Differentiable fractal interpolation functions

Let t0 < t1 < ... < tN be real numbers, and I = [t0, tN ] ⊂ R the closed interval that
contains them. Let a set of data points {(tn, xn) ∈ I × R : n = 0, 1, 2, ..., N} be given. Set
In = [tn−1, tn] and let Ln : I → In, n ∈ {1, 2, ..., N} be contractive homeomorphisms such
that:

Ln(t0) = tn−1, Ln(tN) = tn (1)

|Ln(c1)− Ln(c2)| ≤ l |c1 − c2| ∀ c1, c2 ∈ I (2)

for some 0 ≤ l < 1.
Let −1 < αn < 1; n = 1, 2, ..., N , F = I × [c, d] for some −∞ < c < d < +∞ and N

continuous mappings, Fn : F → R be given satisfying:

Fn(t0, x0) = xn−1, Fn(tN , xN) = xn, n = 1, 2, ..., N (3)

|Fn(t, x)− Fn(t, y)| ≤ αn|x− y|, t ∈ I, x, y ∈ R (4)

Now define functions

wn(t, x) = (Ln(t), Fn(t, x)), ∀ n = 1, 2, ..., N

Theorem 1. (Barnsley [1]) The iterated function system (IFS)[5] {F, wn :
n = 1, 2, ..., N} defined above admits a unique attractor G. G is the graph of a continuous
function f : I → R which obeys f(tn) = xn for n = 0, 1, 2, ..., N .

The previous function is called a fractal interpolation function (FIF) corres-
ponding to {(Ln(t), Fn(t, x))}N

n=1. f : I → R, is the unique function satisfying the functional
equation

f(Ln(t)) = Fn(t, f(t)), n = 1, 2, ..., N, t ∈ I

or,
f(t) = Fn(L−1

n (t), f ◦ L−1
n (t)), n = 1, 2, ..., N, t ∈ In = [tn−1, tn] (5)

Let F be the set of continuous functions f : [t0, tN ] → [c, d] such that f(t0) = x0; f(tN) =
xN . Define a metric on F by

‖f − g‖∞ = max {|f(t)− g(t)| : t ∈ [t0, tN ]} ∀ f, g ∈ F

Then (F , ‖ · ‖∞) is a complete metric space.

Define a mapping T : F → F by:

(Tf)(t) = Fn(L−1
n (t), f ◦ L−1

n (t)) ∀ t ∈ [tn−1, tn], n = 1, 2, ..., N

Using (1)-(4), it can be proved that (Tf)(t) is continuous on the interval [tn−1, tn] for n =
1, 2, ..., N and at each of the points t1, t2, ..., tN−1. T is a contraction mapping on the metric
space (F , d)

‖Tf − Tg‖∞ ≤ |α|∞‖f − g‖∞ (6)



Generalization of the piecewise polynomial interpolation by fractal functions 241

where |α|∞ = max {|αn|; n = 1, 2, ..., N}. Since |α|∞ < 1, T possesses a unique fixed point
on F , that is to say, there is f ∈ F such that (Tf)(t) = f(t) ∀ t ∈ [t0, tN ]. This function is
the FIF corresponding to wn.

The most widely studied fractal interpolation functions so far are defined by the IFS

Ln(t) = ant + bn (7)

Fn(t, x) = αnx + qn(t) (8)

where qn(t) is an affine map [1, 6]. αn is called a vertical scaling factor of the transformation
wn. We deal here with the case where qn is a polynomial of odd-degree, that can be considered
a generalization of polynomial spline functions.

The following theorem assures the existence of differentiable FIF.

Theorem 2. (Barnsley and Harrington [3]) Let t0 < t1 < t2 < ... < tN and Ln(t), n =
1, 2, ..., N , the affine function Ln(t) = ant + bn satisfying (1)-(2). Let an = L′

n(t) = tn−tn−1

tN−t0
and Fn(t, x) = αnx + qn(t), n = 1, 2, ..., N verifying Eqs. (3)-(4). Suppose for some integer
p ≥ 0, |αn| < ap

n and qn ∈ Cp[t0, tN ]; n = 1, 2, ..., N . Let

Fnk(t, x) =
αnx + q

(k)
n (t)

ak
n

k = 1, 2, ..., p (9)

x0,k =
q
(k)
1 (t0)

ak
1 − α1

xN,k =
q
(k)
N (tN)

ak
N − αN

k = 1, 2, ..., p

If

Fn−1,k(tN , xN,k) = Fnk(t0, x0,k) (10)

with n = 2, 3, ..., N and k = 1, 2, ..., p, then {(Ln(t), Fn(t, x))}N
n=1 determines a FIF f ∈

Cp[t0, tN ] and f (k) is the FIF determined by {(Ln(t), Fnk(t, x))}N
n=1, for k = 1, 2, ..., p.

In the present paper, qn are polynomials of degree 2m − 1. According to the previous
theorem, consider p = 2m − 2, f ∈ C2m−2. The vertical scaling factor must satisfy |αn| <
a2m−2

n , n = 1, 2, ..., N . If αn = 0 ∀ n = 1, 2, ..., N , f(t) = qn ◦ L−1
n (t) ∀ t ∈ In (FIF) is

a piecewise odd degree polynomial and f ∈ C2m−2, therefore is a polynomial spline ([7]). In
this sense, we refer to this kind of functions as spline fractal interpolation functions (SFIF).

§3. Error bounds for the interpolation by odd degree polynomial fractal
functions

In this paragraph, the existence of a fractal interpolation function defined by a IFS of type (9)
where p = 2m − 2 and qn(t) is a polynomial of degree 2m − 1 verifying the hypotheses of
the theorem of Barnsley & Harrington is assumed. 2m − 2 end conditions are specified at the
extremes.

The equality of all the vertical factors is supposed for the sake of simplicity. In the first
place the error committed in the substitution of the function x(t) by the SFIF fα(t) with factor
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α will be bounded. A result concerning polynomial spline functions due to M.H. Schultz [8] is
used.

By Hm(a, b) we mean the class of all functions f(x) defined on [a, b] which possess an
absolutely continuous (m− 1)th derivative on [a, b] and whose mth derivative is in L2(a, b).

From here m > 1, m ∈ N, N ≥ 1; h = tn − tn−1. The following constants will be used in
the next theorem.

If m− 1 ≤ z ≤ 2m− 2 and 0 ≤ j ≤ m:

Km,m,z,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m− 1 ≤ z ≤ 2m− 2, j = m

( 1
π
)m−j if m− 1 = z, 0 ≤ j ≤ m− 1

(z+2−m)!
πm−j if m− 1 ≤ z ≤ 2m− 2, 0 ≤ j ≤ 2m− 2− z

(z+2−m)!
j! πm−j if m− 1 ≤ z ≤ 2m− 2, 2m− 2− z ≤ j ≤ m− 1

If m− 1 ≤ z ≤ 2m− 2 and 0 ≤ j ≤ m:

Km,2m,z,j = Km,m,z,j Km,m,z,0

If m < p < 2m, 4m− 2p− 1 ≤ z ≤ 2m− 2 and 0 ≤ j ≤ m:

Km,p,z,j = Kp,p,2m−1,j + Km,2m,z,j 2
1
2
(2m−p)
(

p!
(2p−2m)!

)2 (‖∆‖
∆

)2m−p

with ‖∆‖ = max
0≤i≤N−1

(ti+1 − ti), ∆ = min
0≤i≤N−1

(ti+1 − ti).

If m < p ≤ 2m, 4m− 2p− 1 ≤ z ≤ 2m− 2 and m < j ≤ p:

Km,p,z,j = Kp,p,p,j + (Km,p,z,m + Kp,p,p,m) 2
j−m

2

(
(2p+m)!
(2p−j)!

)2 (‖∆‖
∆

)j−m

If m− 1 ≤ z ≤ 2m− 2 and 0 ≤ j ≤ m− 1:

K∞
m,m,z,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Km,m,z,j+1 if m− 1 = z, 0 ≤ j ≤ m− 1

Km,m,z,j+1 if m− 1 < z ≤ 2m− 2, 0 ≤ j ≤ 2m− 2− z

(j − 2m + 3 + z)1/2 Km,m,z,j+1 if m− 1 < z ≤ 2m− 2,

2m− 2− z < j ≤ m− 1

If m− 1 ≤ z ≤ 2m− 2 and 0 ≤ j ≤ m− 1:

K∞
m,2m,z,j+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Km,2m,z,j+1 if m− 1 = z, 0 < j ≤ m− 1

Km,2m,z,j+1 if m− 1 < z ≤ 2m− 2, 0 ≤ j ≤ 2m− 2− z

(j − 2m + 3 + z)1/2 Km,2m,z,j+1 if m− 1 < z ≤ 2m− 2

if 2m− 2− z < j ≤ m− 1



Generalization of the piecewise polynomial interpolation by fractal functions 243

If m < p < 2m, 4m− 2p− 1 ≤ z ≤ 2m− 2, 0 ≤ j ≤ m− 1:

K∞
m,p,z,j = K∞

p,p,2m−1,j + K∞
m,2m,z,j 2

2m−p
2

( p!

(2p− 2m)!

)2 (‖∆‖
∆

)2m−p

(11)

If m < p ≤ 2m, 4m− 2p− 1 ≤ z ≤ 2m− 2, m ≤ j ≤ p− 1:

K∞
m,p,z,j = K∞

p,p,p,j + (K∞
m,p,z,m−1 + K∞

p,p,p,j)2
j−m+1
(

(2p−m)!
(2p−j−1)!

)2(‖∆‖
∆

)j−m+1

Theorem 3. ([8]) Let x(t) be in H2m−1(a, b) and let ∆ : a = t0 < t1 < ... < tN = b be
a mesh of the interval. Let S(x, t) be a spline of degree (2m − 1) to x(t) on ∆ satisfying
S(k)(x, t0) = x(k)(t0), S(k)(x, tN) = x(k)(tN) for 0 ≤ k ≤ m− 1. Then we have

‖x(k)(t)− S(k)(x, t)‖∞ ≤ K∞
m,2m−1,2m−2,k ‖x(2m−1)‖2 ‖∆‖2m− 3

2
−k (12)

for 0 ≤ k ≤ 2m− 2, with

‖x(2m−1)‖2 =
(∫ b

a

(x(2m−1)(t))2dt
)1/2

Consider the mapping
T : J ×F → F
(α, f) → Tαf

with J = [0, r]; 0 ≤ r < 1; r fixed and [t0, tN ] = I . For t ∈ In = [tn−1, tn] define

Tαf(t) = Fα
n (L−1

n (t), f ◦ L−1
n (t)) = αf ◦ L−1

n (t) + qα
n ◦ L−1

n (t) (13)

The superscript α represents the dependence regarding the vertical scaling factor. The poly-
nomial qn(t) is expressed in terms of α, that is to say, qα

n(t) = qn(α, t). As previously asserted,
the fixed point of Tα is the FIF (Barnsley’s theorem).

Proposition 4. Let f ∈ F and let qn(α, t) be differentiable and such that ∃ D0 ≥ 0 verifying
|∂qn

∂α
(ξ, t)| ≤ D0 ∀ (ξ, t) ∈ J × I and ∀ n = 1, 2, ..., N . Then:

‖Tαf − Tβf‖∞ ≤ |α− β| (‖f‖∞ + D0)

holds.

Proof. Let f ∈ F , for each value t ∈ In:

|Tαf(t)− Tβf(t)| = |αf ◦ L−1
n (t) + qα

n ◦ L−1
n (t)− βf ◦ L−1

n (t)− qβ
n ◦ L−1

n (t)| ≤

|αf ◦ L−1
n (t)− βf ◦ L−1

n (t)|+ |qα
n ◦ L−1

n (t)− qβ
n ◦ L−1

n (t)|
The first term verifies the inequality:

|αf ◦ L−1
n (t)− βf ◦ L−1

n (t)| ≤ |α− β| |f ◦ L−1
n (t)| ≤ |α− β| ‖f‖∞ (14)
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To bound the second term, the mean-value theorem for functions of several variables is applied.
With the enunciated hypotheses ∃ ξ ∈ J such that

qn(α, t̃)− qn(β, t̃) =
∂qn

∂α
(ξ, t̃)(α− β)

and therefore,
|qα

n ◦ L−1
n (t)− qβ

n ◦ L−1
n (t)| ≤ D0|α− β| (15)

The result is obtained from inequalities (14)-(15).

Proposition 5. Let fα, fβ be fractal interpolation functions with vertical scaling factors α and
β. Under the hypotheses of proposition 4, the following inequality holds:

‖fα − fβ‖∞ ≤
1

1− |α| |α− β| (‖fβ‖∞ + D0)

Proof. By definition fα, fβ are fixed points of Tα and Tβ , respectively. Therefore Tα(fα) = fα,
Tβ(fβ) = fβ . Applying the inequality (6) and the proposition 4:

‖fα − fβ‖∞ = ‖Tαfα − Tαfβ + Tαfβ − Tβfβ‖∞ ≤

≤ ‖Tαfα − Tαfβ‖∞ + ‖Tαfβ − Tβfβ‖∞ ≤
≤ |α| ‖fα − fβ‖∞ + |α− β|(‖fβ‖∞ + D0)

From here:

‖fα − fβ‖∞ ≤
1

1− |α| |α− β| (‖fβ‖∞ + D0) (16)

Remark 1. Setting β = 0 in (16)

‖fα − f0‖∞ ≤
1

1− |α| |α| (‖f0‖∞ + D0) (17)

As previously explained, f0 is a polynomial spline of degree 2m − 1 that interpolates the data
points: f0 = S(x, t). One can bound ‖f0‖∞ applying the theorem of Schultz [8].
Denoting C0 = K∞

m,2m−1,2m−2,0 ‖x(2m−1)‖2, and setting k = 0 in (12):

‖f0‖∞ ≤ C0h
2m− 3

2 + ‖x‖∞ (18)

If ‖x‖∞ = L0, from (17),(18)

‖fα − f0‖∞ ≤
1

1− |α| |α| (C0h
2m− 3

2 + L0 + D0) (19)

Theorem 6. Interpolation error bound. Let x(t) be a function verifying x(t) ∈ H2m−1(t0, tN).
Let qn(α, t) be differentiable and such that ∃ D0 ≥ 0 with |∂qn

∂α
(ξ, t)| ≤ D0 ∀ (ξ, t) ∈ J × I ,

∀ n = 1, 2, ..., N . Let |α| < 1
N2m−2 . Then

‖x− fα‖∞ ≤
N2m−2

N2m−2 − 1
[C0h

2m− 3
2 +

(L0 + D0)

T 2m−2
h2m−2]

being L0 = ‖x‖∞, T = tN − t0.
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Proof.
‖x− fα‖∞ ≤ ‖x− f0‖∞ + ‖f0 − fα‖∞

The first adding can be bounded applying the theorem of Schultz with k = 0:

‖x− f0‖∞ ≤ C0h
2m− 3

2 (20)

In the second term the remark of the proposition 5 is used (19):

‖f0 − fα‖∞ ≤
1

1− |α| |α| (C0h
2m− 3

2 + L0 + D0) (21)

From (20)-(21):

‖x− fα‖∞ ≤
1

1− |α| [C0h
2m− 3

2 + |α|(L0 + D0)]

By the hypotheses of the theorem of differentiability of fractal interpolation functions ([3]):
|α| < 1

N2m−2 = h2m−2

T 2m−2 and, therefore, 1
1−|α| ≤ N2m−2

N2m−2−1
, so the inequality above is transformed

in:

‖x− fα‖∞ ≤
N2m−2

N2m−2 − 1
[C0h

2m− 3
2 +

(L0 + D0)

T 2m−2
h2m−2] (22)

Following the theorem of Barnsley & Harrington, the derivatives f (k) of f are FIF corre-
sponding to the IFS {(Ln(t), Fnk(t, x))}N

n=1 with

Fnk(t, x) = Nkαx + Nkq(k)
n (t)

Consequently, the results above can be generalized to the first derivatives of f .

Proposition 7. Let f
(k)
α , f

(k)
β be the k−th derivatives (k = 0, 1, ..., 2m − 2) of fα and fβ

respectively and let ∂kqn

∂tk
(α, t) be differentiable and such that ∃Dk ≥ 0 with |∂k+1qn

∂α∂tk
(ξ, t)| ≤ Dk

∀ (ξ, t) ∈ J × I and ∀ n = 1, 2, ..., N . Then:

‖f (k)
α − f

(k)
β ‖∞ ≤

Nk|α− β|
1−Nk|α| (‖f (k)

β ‖∞ + Dk)

holds.

Proof. Analogous to the proposition 5.

Theorem 8. Derivatives interpolation error bounds. Let x(t) be a function verifying x(t) ∈
H2m−1(t0, tN). Let ∂kqn

∂tk
(α, t) be differentiable and ∃ Dk ≥ 0 such that |∂k+1qn

∂α∂tk
(ξ, t)| ≤ Dk

∀ (ξ, t) ∈ J × I and ∀ n = 1, 2, ..., N . Let s = s(N) such that 0 < s < 1 and |α| ≤ 1
N2m−2+s .

Then:

‖x(k) − f (k)
α ‖∞ ≤

N2m−2+s−k

N2m−2+s−k − 1
[Ckh

2m− 3
2
−k +

(Lk + Dk)

T 2m−2+s−k
h2m−2+s−k]

for k = 0, 1, ..., 2m− 2, being Lk = ‖x(k)‖∞, h = tn − tn−1, T = tN − t0 and
Ck = K∞

m,2m−1,2m−2,k ‖x(2m−1)‖2
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Proof. By hypothesis |α| < 1
N2m−2 . Since 1

N2m−2+x → 1
N2m−2 as x → 0+, there exists s = s(N)

such that 0 < s < 1 and |α| ≤ 1
N2m−2+s . The rest is analogous to the theorem 6.

§4. Conclusions

The bounds of error in the approximation by polinomial splines are generalized to differentiable
polynomial Barnsley-Harrington functions. The error obtained is comparable to other precision
procedures, as the interpolation by piecewise polynomials. The property of good fit of the
derivatives is also verified here. The possible loss of precision is counterbalanced with the
generality of the method, as the fractal interpolants contain the odd degree polynomial spline
functions as a particular case. That extension is verified under preservation of the smoothness
of the function (in the sense of continuity of the derivatives).
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