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BLENDING SURFACES BY SMOOTHING

PDE SPLINES

M. Pasadas and M.L. Rodrı́guez

Abstract. This work is concerned with how we can mix conditions of both interpolation
and approximation in order to find a blending surface joining two or more surfaces when
approximating a given data point set, and modelled from a certain partial differential equa-
tion. We establish a variational characterization for the solution of this problem and we
establish some convergence result. Finally, we discretize this problem in a finite element
space.
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§1. Introduction

A blending surface is a surface that smoothly joins two or more given surfaces. In CAGD,
solid objects are often represented by their boundary surfaces. These boundary surfaces can be
classified into two types:

• Primary surfaces, that mainly define the shape of the objects, and

• Blending surfaces, that are important because they erase sharp edges and corners which
are undesirable for functionality or aesthetic reasons.

The problem of constructing a system of surfaces that meet smoothly arises in a wide variety of
applications in CAGD. For example, in designing a gate valve, sharp edges are avoided since
they retard the fluid flow.

This problem appears particularly in the automotive and aerospace industries too, where
the manufactured objects are designed from some interpolation and approximation data, and
also when verifying some hydrodynamic properties that can be modelled by certain differential
equations.

So, automatically constructing blending surfaces is important to facilitate the design pro-
cess.

There are many possibilities to generate blending surfaces. In the 80’s many authors like
Warren[10] and Hopcroft and Hoffmann[6, 7, 8] studied blending surfaces from an algebraic
viewpoint.
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However, many problems in engineering, architecture, geology and other fields require
smooth curves and surfaces whose shape cannot be described by an elementary representation.
Because of this, new methods have been introduced.

Bloor and Wilson[1, 2, 3, 4] pioneered another modelling technique for the generation
of blending surfaces, the PDE method, that generates a smooth surface by solving a partial
differential equation with some given boundary conditions.

Greiner[5] presents an iterative procedure to obtain blending curves or surfaces.

This work is concerned with how we can mix conditions of both interpolation and approxi-
mation in order to find a surface that verifies some boundary conditions when approximating a
given data point set and which is modelled from a certain partial differential equation. In [9],
we studied a similar problem for explicit curves introducing the concept of ODE curve.

The paper is organized as follows. In Section 2, we briefly recall some preliminary nota-
tions. In Section 3, we define and characterize the notion of PDE surface. Section 4 is dedicated
to the formulating of two convergence results. Section 5 is devoted to studying the associated
discrete problem in a space of finite element. Finally, in Section 5 we present some graphical
examples that state the efficiency of the method.

§2. Preliminaries

We shall use the following notations and assumptions:

• Ω is a bounded nonempty domain of R2;

• the Euclidean norm and inner product in R3 will be denoted by 〈·〉 and 〈·, ·〉 respectively.

• L2(Ω; R3) stands for the linear space of real Lebesgue measurable functions such that∫
Ω
〈u(x)〉2dx < +∞;

• for each n ∈ N , we designate by Hn(Ω; R3) the usual Sobolev space of (classes of)
functions u ∈ L2(Ω; R3), together with all their partial derivatives ∂iu, in the distribution
sense, of order |i| ≤ n, where for all i = (i1, i2) ∈ N2, |i| = i1 + i2 and ∂iu(x) =

∂|i|u

∂xi1
1 ∂xi2

2

, for any x = (x1, x2) ∈ Ω;

• Hn
0 will be denote the closure of C∞

0 (Ω; R3) in Hn(Ω; R3).

Obviously H0
0 (Ω; R3) = L2(Ω; R3).

The linear space L2(Ω; R3) is equipped with the inner product (u,v)0 =

∫
Ω

〈u(x), v(x)〉dx

and the corresponding norm |u|0 = (u,u)
1
2
0 .

The Sobolev space Hn(Ω; R3) is equipped with the inner product

((u,v))n =
∑
|i|≤n

∫
Ω

〈∂iu(x), ∂iv(x)〉dx,
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the corresponding norm ‖u‖n = ((u,u))
1
2
n , the semi–inner products

(u,v)l =
∑
|i|=l

∫
Ω

〈∂iu(x), ∂iv(x)〉 dx, 0 ≤ l ≤ n,

and the corresponding semi–norms |u|l = (u,u)
1
2
l , for all 0 ≤ l ≤ n.

We use the notation
∂jv

∂nj
(x) = Djv(x)

j)

(n(x), . . . ,n(x)) for all j ∈ N, where Djv(x) is

the j–th Fréchet derivative of v and x is the unit outer normal vector at x ∈ Ω. For j = 0,
∂0v

∂n0
(x) indicates v(x).

Moreover, we denote by (Rk)k,l the space of the real vectorial matrices with k rows and l
columns, with the inner product and corresponding norm

〈〈A, B〉〉k,l =
k∑

i=1

l∑
j=1

〈aij, bij〉, 〈〈A〉〉k,l = 〈〈A, A〉〉
1
2
k,3

with A = (aij) 1≤i≤k
1≤j≤3

and B = (bij) 1≤i≤k
1≤j≤3

. If l = 1 we write 〈〈 · , · 〉〉k and 〈〈 · 〉〉k instead to

〈〈 · , · 〉〉k,1 and 〈〈 · 〉〉k,1, respectively.
Finally, for two real vectorial matrix A = (aij) ∈ (R3)k,l and B = (bij) ∈ (R3)l,p we

denote by AB ∈ Rk,p the real matrix given by AB =
(∑l

s=1〈ais,bsj〉
)

1≤i≤k
1≤j≤p

.

Let n ≥ 1 and let L : H2n(Ω; R3) → L2(Ω; R3) be a differential operator given by

Lu(x) =
∑

|i|,|j|≤n

(−1)|j|∂j(pij(x) ∂iu(x)), x ∈ Ω, (1)

where pij ∈ C |j|(Ω; R3) and pij = pji, for all |i|, |j| ≤ n.

We note that we can write

Lu = (Lui)1≤i≤3, where Lui =
∑

|i|,|j|≤n

(−1)|j|∂j((pi ◦ pij) (pi ◦ ∂iu)),

with pi, i = 1, 2, 3, the orthogonal projections of R3 into R.

Now, we consider the symmetric bilinear form associated with L defined on Hn(Ω; R3) ×
Hn(Ω; R3) by

(u,v)L =
∑

|i|,|j|≤n

(pij∂
iu, ∂jv)0

and we assume that ∑
|i|,|j|≤n−1

ξi(pk ◦ pij)(x)ξj ≥ 0, ∀x ∈ Ω, k = 1, 2, 3, (2)

and that there exists ν > 0 such that∑
|i|,|j|=n

ξi(pk ◦ pij)(x)ξj ≥ ν〈ξ〉2n
2 ,∀x ∈ Ω, k = 1, 2, 3, (3)
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for all ξ = (ξ1, ξ2) ∈ R2, where ξi = ξi1
1 ξi2

2 , for any i = (i1, i2) ∈ N2, and 〈 · 〉2 indicates the
Euclidean norm in R2.

Due to (3), the differential operator L is said to be strongly elliptic on Ω.

It can be easily shown that under the hypotheses (2)–(3) the bilinear form (·, ·)L defines a

semi–inner product on Hn(Ω; R3) whose associated semi–norm is denoted by |u|L = (u,u)
1
2
L.

In addition, we suppose that (·, ·)L is coercive on Hn
0 (Ω; R3), that is, there exists C > 0

such that
(u,u)L ≥ C‖u‖2

n, ∀u ∈ Hn
0 (Ω; R3).

§3. Formulation of the problem

We introduce the following assumptions. Suppose we are given:

• the functions f ∈ L2(Ω; R3) and hj ∈ C(Ω; R3), for j = 0, . . . , n− 1;

• a set A = {a1, . . . , am} of m = m(r) distinct points of Ω, with r ∈ N;

• a set B = {b1, . . . ,bN} of N distinct points of ∂Ω;

• a data vector β = (β1, . . . ,βm) ∈ R3m.

Now, we suppose that

A ∪B contains a Pn−1(Ω; R3)–unisolvent subset,

where Pn−1(Ω; R3) is the linear space of polynomial functions defined from Ω into R3 of total
degree less than n− 1.

Moreover, we define the operators

ρ : Hn(Ω; R3) → (R3)m, τ : Hn(Ω; R3) ∩ Cn−1(Ω; R3) → (R3)N,n

given by

ρv = (v(ai))1≤i≤m, τv =

(
∂jv

∂nj
(bi)

)
1≤i≤N

0≤j≤n−1

,

the convex set
H = {u ∈ Hn(Ω; R3) ∩ Cn−1(Ω; R3) : τu = y}

where y = (hj(bi)) 1≤i≤N
0≤j≤n−1

, and the linear space

H0 = {u ∈ Hn(Ω; R3) ∩ Cn−1(Ω; R3) : τu = 0}.

Finally, we consider the boundary value problem∣∣∣∣∣∣
Lu(x) = f(x), x ∈ Ω,
∂ju

∂nj
(x) = hj(x), x ∈ ∂Ω, 0 ≤ j ≤ n− 1,

(4)

where L is the differential operator defined in (1).
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Definition 1. Given ε > 0, we say that σ ∈ H is a PDE spline associated to (4), A, B, β, y
and ε if σ is a solution of the problem

∀v ∈ H, J(σ) ≤ J(v), (5)

where J is the functional defined on Hn(Ω; R3) by

J(v) = 〈〈ρv − β〉〉2m + ε(|v|2L − 2(f ,v)0). (6)

Now, we present a variational characterization of the PDE surfaces.

Theorem 1. Problem (5) has a unique solution which is characterized as the unique solution
of the following variational problem: Find σ ∈ H such that

∀v ∈ H0, 〈〈ρσ, ρv〉〉m + ε(σ,v)L = 〈〈β, ρv〉〉m + ε(f ,v)0.

Analogously, we present a method of Lagrangian multipliers to solve Problem (5).

Theorem 2. There exists a unique (σ, λ) ∈ H × (R3)N,n such that

〈〈ρσ,ρv〉〉m + ε(σ,v)L + 〈〈λ, τv〉〉N,n = 〈〈β, ρv〉〉m + ε(f ,v)0,

for all v ∈ Hn(Ω; R3) ∩ Cn−1(Ω; R3), where σ is the unique solution of Problem (5).

§4. Convergence

We keep all the former notations and hypotheses. We can see that ρ depends on r and τ
depends on N .

First, we suppose that N is fixed and that ε = ε(m). Let g ∈ H and we denote by σm
ε the

PDE spline associated with (4), A, B, ρg, τg and ε.

Theorem 3. Suppose that the following hypotheses hold:

sup
x∈Ω

min
a∈A
〈x− a〉2 = o

(
1

r

)
, r → +∞,

and
ε = o(r), r → +∞.

Then, one has
lim

r→+∞
‖σm

ε − g‖n = 0.

Now, we suppose that the boundary value problem (4) has a solution u ∈ H2n(Ω; R3). We
denote by σN

ε the PDE spline associated with (4), A, B, ρu, τu and ε. Then we can prove the
following result:

Theorem 4. Suppose that

sup
x∈∂Ω

min
b∈B

〈x− b〉2 = o(1), N → +∞.

Then, one has
lim

N→+∞
‖σN

ε − u‖n = 0.
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§5. Discretization

The solution of the above described problem is usually not easy to find explicitly, so we are
going to discretize it in order to apply a numerical method for its resolution.

Therefore, we have to consider a space of finite dimension, where we will formulate and
solve the discrete problem.

In this case, the functional finite-dimensional space that we have chosen is a finite element
space but we could consider solving other spaces: for instance, a spline space of tensor product
type, or a box-spline space.

Thus, let Ω ∈ R2 be a polygonal bounded open set and suppose we are given:

• a subsetH of R∗
+ where 0 is an accumulation point;

• for all h ∈ H, a partition Th of Ω made of rectangles or triangles of diameter less than h;

• for any h ∈ H, a parametric finite element space Xh constructed on Th such that

Xh ⊂ Hn(Ω; R3) ∩ Cn−1(Ω; R3).

Now, we suppose that
∀b ∈ B, b is a knot of Th,

and we consider the convex set

Hh = {u ∈ Xh : τu = y}

and the linear space
H0

h = {u ∈ Xh : τu = 0}.

Definition 2. Given ε > 0, we say that σh ∈ Hh is a discrete PDE spline associated with (4),
A, B, β, y and ε if σh is a solution of the problem

∀v ∈ Hh, J(σh) ≤ J(v), (7)

where J is the functional defined in (6).

Now, we present two results which are the discrete versions of Theorems 1 and 2.

Theorem 5. Problem (7) has a unique solution which is characterized as the unique solution
of the following variational problem: Find σh ∈ Hh such that

∀v ∈ H0
h, 〈〈ρσh, ρv〉〉m + ε(σh,v)L = 〈〈β, ρv〉〉m + ε(f ,v)0.

Theorem 6. There exists a unique (σh, λ) ∈ Hh × RN,n such that

〈〈ρσh, ρv〉〉m + ε(σh,v)L + 〈〈λ, τv〉〉N,n = 〈〈β, ρv〉〉m + ε(f ,v)0, ∀v ∈ Xh, (8)

where σh is the unique solution of Problem (7).
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We consider a basis B = {ω1, . . . ,ωZ} of the finite element space Xh. Let us compute the
(unique) solution of Problem (7).

Obviously σh =
Z∑

i=1

αiωi and, from (8), it follows that there exists λ ∈ RN,n such that

Z∑
i=1

αi (〈〈ρωi, ρv〉〉m + ε(ωi,v)L) + 〈〈λ, τv〉〉N,n = 〈〈β, ρv〉〉m + ε(f ,v)0, ∀v ∈ Xh,

and verifying

τ

(
Z∑

i=1

αiωi

)
= y.

Taking v = ωi, for i = 1, . . . , Z, we obtain a linear system of order Z +Nn with the unknown

α1, . . . , αZ , λ1, . . . ,λNn.

The matrix form of this system is(
C D
DT 0

)(
α
λ

)
=

(
f
y

)
,

where
C = ATA + εR, D = (τωi)1≤i≤Z , f = AT β + ((ωi, f)0)1≤i≤Z ,

with
A = (ωj(ai)) 1≤i≤m

1≤j≤Z
, R = ((ωi, ωj)L)1≤i,j≤Z .

§6. Numerical Examples

Let Ω = (0, 1)× (0, 1) and we consider the cylindric surfaces parameterized respectively by

f(x, y) = (2y − 1, 2 cos(2πx), 2 sin(2πx)), (x, y) ∈ Ω,

and
g(x, y) = (2y + 1, cos(2πx), sin(2πx)), (x, y) ∈ Ω.

We apply our construction method of blending surfaces using discrete PDE splines from a
partition in 8 × 4 equal rectangles whose sides are parallel to the coordinate axes, the BFS’s
rectangle of class C1 and the boundary–value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂4u

∂x4
(x, y) + 2a

∂4u

∂x2∂y2
(x, y) + a2∂4u

∂y4
(x, y) = 0, (x, y) ∈ Ω,

u(x, 0) = f(x, y),
∂u

∂n
(x, 0) =

∂f

∂n
(x, 1), 0 ≤ x ≤ 1,

u(x, 0) = f(x, y),
∂u

∂n
(x, 0) =

∂f

∂n
(x, 1), 0 ≤ x ≤ 1,
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with a > 0.
Consider the vectorial function h(x, y) = (2y − 1, 0.5 cos(2πx), 0.5 sin(2πx)).
Figure 1 shows the two cylindrical surfaces and the graph of curve h(x, 0.5), with 0 ≤ x ≤

1.
From top to bottom and from left to right, respectively, Figure 2 shows the blending surface

that smoothly join the two sylindrical surfaces by the discrete PDE spline obtained from:

• A = ∅, ε = 1, a = 1;

• A = ∅, ε = 1, a = 10;

• A = {(i/9, 0.5), i = 0, . . . , 8}, β = ρh, ε = 10−3, a = 10;

• A = {(i/9, 0.5), i = 0, . . . , 8}, β = ρh, ε = 10−5, a = 10.

§7. Conclusions

We have developed a construction method of blending surfaces using PDE splines. These
splines are constructed minimizing a quadratic functional which includes two measures of how
well the spline approximates a data point set and the solution of a given boundary–value prob-
lem of a partial differential equation. Boundary conditions are given by the surfaces that we
want to blend.

The problem has been discretized in a finite element space and the constructed discrete
PDE surface is obtained by a linear system whose order depends only on the dimension of the
discretization space.
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Figure 1: Two cylindrical surfaces and a circumference that contains the approximation points.
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Figure 2: Some blending surfaces that smoothly join the two cylindrical surfaces.
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