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RICHARDSON EXTRAPOLATION ON

GENERALIZED SHISHKIN MESHES FOR

SINGULARLY PERTURBED PROBLEMS

J.L. Gracia and C. Clavero

Abstract. In this work we are interested in to apply the Richardson extrapolation technique
on a type of finite difference schemes, which are used to solve 1D singularly perturbed
problems of convection-diffusion type. The numerical method is constructed on general-
ized Shishkin meshes, which are defined by using a generating function; in all cases the
mesh points are condensed in the boundary layer region, in order to obtain a good approx-
imation in the maximum norm. We prove that, if the diffusion coefficient is sufficiently
small, an appropriate Richardson extrapolation increase the order of uniform convergence
associated to the basic finite difference scheme. Some numerical examples permit us to
confirm in practice the theoretical results.
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§1. Introduction

We consider the Dirichlet boundary value problem

Lεu ≡ −εu′′ + a(x)u′ + b(x)u = f(x), 0 < x < 1, u(0) = u0, u(1) = u1, (1)

where u0 and u1 are constants, a, b and f are sufficiently smooth functions satisfying a(x) >
2α > 0, b(x) ≥ 0, ∀x ∈ [0, 1] and the diffusion parameter is sufficiently small, 0 < ε " 1.
This problem is the simple linear 1D model of convection-diffusion problems with dominating
convection term and it appears in many areas of science (fluid mechanic, semiconductor devices
and heat or mass transport by example). It is known (see [3]) that the exact solution has a
boundary layer at x = 1.

In last years many works (see [3] and references therein) have been developed to solve
efficiently this type of problems, using robust or ε-uniform convergent methods (finite differ-
ences or finite elements) defined on piecewise uniform Shishkin meshes, which condense the
mesh points in the boundary layer region. In [8] new generalized Shishkin type meshes were
introduced, proving also the uniform convergence of classical numerical schemes on this type
of meshes. Nevertheless, only in few papers the numerical methods have order of convergence
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bigger than one; in [1] HODIE schemes on Shishkin meshes were analyzed, proving second and
third order of uniform convergence; in [2] these results were extended for generalized Shihskin
meshes; in [4] it was proved that the defect correction method, combining the upwind and the
central finite difference schemes, is a second order ε-uniform convergent scheme; finally, in [7]
it was proved that Richardson extrapolation increase the order of the upwind scheme defined
on classical Shishkin meshes.

Richardson extrapolation is a well known procedure to improve the numerical solution us-
ing an appropriate combination of previously computed solutions (see [5, 6] for the application
of this technique to non-singularly perturbed problems). In this paper we prove that the combi-
nation of a HODIE finite difference scheme, defined on generalized Shihskin meshes, and the
Richardson extrapolation, is an efficient technique to increase the order of uniform convergence
and also to reduce the errors associated to the numerical scheme.

Throughout the paper C denote any positive constant independent of ε and the discretization
parameter N .

§2. The generalized Shishkin meshes

Before constructing the numerical method, we present the generalized Shishkin mesh, which
was introduced in [8]. Let N ≥ 4 be an even integer (the discretization parameter); we define
the transition parameter by

σ = min {1/2, σ0ε ln N}, (2)

where σ0 is a positive constant to be fixed later. If σ = 1/2, we take a uniform mesh with
x0 = 0, xN = 1; in this case the analysis could be made in a classical way; therefore, in the
remainder of the paper we will suppose that σ = σ0ε ln N . Now, on the interval [0, 1 − σ] we
consider a uniform mesh such that x0 = 0, xN/2 = 1− σ; however, on [1− σ, 1] the mesh will
be graded such that the step sizes, hj = xj−xj−1, satisfy hj ≥ hj+1, j = N/2+1, · · · , N −1.
To define the mesh we use a continuous, monotone increasing and piecewise continuously
differentiable function ϕ(t), t ∈ [1/2, 1] such that ϕ(1/2) = − ln N and ϕ(1) = 0; the mesh
points are given by

xj =

{
(1− σ)2j/N, j = 0, · · · , N/2,
1 + σ0εϕ(tj), tj = j/N, j = N/2 + 1, · · · , N.

(3)

From this definition we see that hj = H = 2(1 − σ)/N, j = 1, · · · , N/2 and N−1 ≤ H ≤
2N−1.

Following [8], we consider a new function ψ(t) = exp(ϕ(t)), which is also increasing and
it satisfies ψ(1/2) = N−1, ψ(1) = 1; some examples of mesh functions ψ (see [8]) are

ψ(t) = e−2(1−t) ln N , (S-mesh) (4)

ψ(t) = 1− 2
(
1−N−1

)
(1− t), (S-B mesh) (5)

ψ(t) = e−(1−t)/(q−(1−t)), q = 1/2 + 1/(2 ln N). (S-B modified mesh) (6)

It is straightforward to prove that

max
t∈[1/2,1]

|ψ′(t)| ≤
{

C ln N, (S-mesh)
C, (S-B and S-B modified mesh)

(7)
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These meshes were used in [8] to prove that the simple upwind scheme is uniformly convergent
with order at most 1; also, the same meshes were used in [4] to prove that the defect correc-
tion technique, based on central differences and the simple upwind scheme, gives a ε-uniform
method having order O(N−1 max |ψ′(t)|)2).

Here we only are interested in meshes whose mesh-generating function ϕ satisfies∫ 1

1/2

|ϕ′(t)|2dt ≤ CN, max
t∈[1/2,1]

ϕ′(t) ≤ CN. (8)

Conditions (8) are sufficient to prove the ε-uniform convergence of the simple upwind scheme
defined on these meshes (see [8]). Moreover, we will assume that there exists a fixed integer
1 ≤ jψ < N/2 independent of N such that

hjaj − 2ε < 0, ∀ j ≥ jψ + N/2. (9)

In [2] it was proved that (8) and (9) are satisfied by S, S-B and S-B modified meshes.

§3. HODIE finite difference scheme and the Richardson extrapolation

Before studying the Richardson extrapolation, we define the basic HODIE finite difference
scheme, which is given as follows:

LN
ε Uj ≡ r−j Uj−1 + rc

jUj + r+
j Uj+1 = q1

j fj−1 + q2
j fj, j = 1, · · · , N − 1,

U0 = u0, UN = u1,
(10)

where fj = f(xj), j = 0, · · · , N (similarly for aj and bj). The coefficients r−j , rc
j , r+

j , q1
j , q2

j

associated to (10), are determined by imposing that the polynomials of degree less or equal 2,
P2[x], belong to the kernel of the local error operator and also that the coefficients satisfy the
normalization condition

q1
j + q2

j = 1, qi
j ≥ 0, i = 1, 2, j = 1, · · · , N − 1. (11)

These coefficients were calculated in [2], where also it was proved the following result of
uniform convergence.

Theorem 1. Let β ≤ α be, N ≥ 4 an even positive integer such that

hj max {||a′||∞, ||b||∞} ≤ α, 1 ≤ j ≤ N,

u the solution of the continuous problem (1), {Uj}N
j=0 the numerical solution of the finite dif-

ference scheme (10) defined on the mesh (3), where ϕ(t) is such that (8) and (9) hold and we
assume that ε ≤ CN−1. Then, the error satisfies

|u(xj)− Uj| ≤ C((N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)2 + N−βσ0), 1 ≤ j ≤ N − 1. (12)

Remark 1. From Theorem 1 and bounds (7) we deduce that, if β satisfies βσ0 ≥ 2, the HODIE
finite difference scheme has order two on S-B and S-B modified meshes and order near two
(due to the logarithmic factor) on classical S-mesh.
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In order to increase the order of convergence of this method, following the original idea
of Natividad-Stynes [7], we consider now a new mesh Ω̄2N

σ = {x̃j}, which is obtained by
bisecting each interval of the original mesh (3). On this mesh, we define the HODIE finite
difference scheme

L̃2N
ε Ũ2N

j ≡ r̃−j Ũ2N
j−1 + r̃c

jŨ
2N
j + r̃+

j Ũ2N
j+1 = q̃1

j fj−1 + q̃2
j fj, 1 ≤ j ≤ 2N − 1,

Ũ2N
0 = u0, Ũ2N

2N = u1,
(13)

where now the coefficients are given by

q̃1
j = aj/(aj + aj−1), if 1 ≤ j < N + 2jψ,

q̃1
j = (hj − hj+1)/(3hj), if N + 2jψ ≤ j ≤ 2N − 1,

q̃2
j = 1− q̃1

j , for 1 ≤ j ≤ 2N − 1,
r̃
(ε, q̃1

j , q̃
2
j , hj, a, b) = r
(ε, q1

j , q
2
j , hj/2, a, b), for � = −, c, +.

(14)

We are interested in to prove that the extrapolated numerical solution defined on the mesh (3)
by

ŪN
j =
(
4Ũ2N

2j − UN
j

)
/3, 1 ≤ j ≤ N − 1, (15)

improves the approximation obtained with the basic HODIE scheme and also that the order of
uniform convergence is higher.

To study the ε-uniform convergence of the extrapolated solution, we need to know the
asymptotic behaviour with respect to ε of the exact solution. In [3] it was proved that the
exact solution can be written as u = v + w, where the regular component v and the singular
component w satisfy Lεv = f, Lεw = 0, respectively, with appropriate boundary conditions
such that for 0 ≤ k ≤ q (q is an integer depending on the data regularity) it holds

|v(k)(x)| ≤ C, |w(k)(x)| ≤ Cε−ke−2α(1−x)/ε. (16)

Similarly to the continuous problem, we decompose the numerical solution as Ũ2N
j = Ṽ 2N

j +

W̃ 2N
j , where

L̃2N
ε Ṽj = q̃1

j fj−1 + q̃2
j fj, 1 ≤ j ≤ 2N − 1, Ṽ0 = v(0), Ṽ2N = v(1),

L̃2N
ε W̃j = 0, 1 ≤ j ≤ 2N − 1, W̃0 = w(0), W̃2N = w(1).

Lemma 1. The local error associated to the regular component satisfies

LN
ε (V N − v)(xj) = ζ(xj)h

2
j +O(εN−1 + N−3), 1 ≤ j ≤ N − 1, (17)

where ζ(x) is a sufficiently smooth function such that in the mesh points it satisfies

ζ(xj) =

(
q1
j aj−1

2
+

h2
j+1(aj − q1

j (aj−1 + aj))

3!hj(hj + hj+1)
+

q1
j (2hj + hj+1)aj−1 + q2

j hj+1aj

3!(hj + hj+1)

)
v′′′

j ,

and its derivatives are bounded with respect to ε.

Proof. The proof is straightforward from Taylor expansion and the bounds (16).
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Let E be the solution of the following boundary value problem

LεE(x) = ζ(x), x ∈ (0, 1), E(0) = E(1) = 0. (18)

Similarly to the original problem we can write E = η + ϑ, where

Lεη(x) = ζ(x), Lεϑ(x) = 0, x ∈ (0, 1), η(0) = −ϑ(0), η(1) = −ϑ(1),

and the functions η, ϑ satisfy

|η(k)| ≤ C, |ϑ(k)| ≤ Cε−ke−2α(1−x)/ε, (19)

for 0 ≤ k ≤ q with q a positive integer, again depending on the data regularity.

Lemma 2. Let h0 = h1 be. Then, it holds

V N
j − v(xj) = η(xj)h

2
j +O(εN−1 + N−3), 1 ≤ j ≤ N − 1. (20)

Proof. We easily prove that

LN
ε η(xj) = Lεη(xj) + LN

ε η(xj)− Lεη(xj) = Lεη(xj) +O(N−2) = ζ(xj) +O(N−2),

or equivalently
h2

jL
N
ε η(xj) = h2

jζ(xj) +O(N−4).

From (17) it follows that

LN
ε (V N − v − h2

jη)(xj) = LN(V N − v)(xj)− h2
jL

N
ε η(xj) =

= ζ(xj)h
2
j +O(εN−1 + N−3)− h2

jζ(xj) +O(N−4) = O(εN−1 + N−3).

We consider now the barrier function

Zj = C(1 + xj)(ε + N−2)N−1, j = 0, . . . , N,

with C a positive constant large enough, which satisfies

LN
ε Zj ≥ |LN

ε (V N − v − h2
jη)(xj)|, 1 ≤ j ≤ N − 1,

and
ZN = C(ε + N−2)N−1 ≥ Cε2 ≥ Ch2

N |η(1)|,
Z0 = C(ε + N−2)N−1 ≥ Cε2 ≥ Cα2e−α/ε ≥ Ch2

1|η(0)|.
Then, the discrete maximum principle proves

|(V N − v − h2
jη)(xj)| ≤ Zj ≤ C(ε + N−2)N−1,

which permit us to deduce (20).

Lemma 3. The error associated to the regular component satisfies

|v(xj)− V̄j| ≤ C(ε + N−2)N−1, 1 ≤ j ≤ N − 1. (21)
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Proof. Taking into account the definition of numerical extrapolated solution giving by (15), the
proof is straightforward from (20).

Lemma 4. The error associated to the singular component satisfies

|w(xj)− W̄N
j | ≤ CN−βσ0 , 1 ≤ j < N/2 + jψ.

Proof. In [2] it was proved that

|w(xj)−WN
j | ≤ CN−βσ0 , 1 ≤ j < N/2 + jψ.

In a similar way we can also obtain

|w(xj)− W̃ 2N
j | ≤ CN−βσ0 , 1 ≤ j < N + 2jψ.

Therefore, for 1 ≤ j < N/2 + jψ, the result follows.

For N/2 + jψ ≤ j ≤ N − 1 the study is not so easy. Firstly, we will prove that the error
can be written in the form

WN
j − w(xj) = (hj/ε)

2F (xj) +O(N−βσ0 + (N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)4),

where the function F is the solution of the boundary value problem

LεF (x) = θ(x), x ∈ (xN/2+jψ−1, 1),
F (xN/2+jψ−1) = WN

N/2+jψ−1 − w(xN/2+jψ−1), F (1) = 0,
(22)

whit θ a sufficiently smooth function satisfying

θ(xj) = ε2

(
h3

j+1

3!h2
j

r+
j −

hj

3!
r−j −

q1
j ε

hj

+
q1
j aj−1

2

)
w′′′

j , N/2 + jψ ≤ j ≤ N − 1,

and also we assume that

|θ(i)(x)| ≤ Cε−(1+i)e−2α(1−x)/ε, x ∈ [xN/2+jψ−1, 1].

Lemma 5. Let σ0 be such that βσ0 ≥ 4. Then, it holds

WN
j −w(xj) = (hj/ε)

2F (xj)+O(N−βσ0 +(N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)4), N/2+jψ ≤ j ≤ N−1.

Proof. Clearly, from the hypotheses on θ, it follows that F satisfies

|F (k)(x)| ≤ C(1 + ε−ke−2α(1−x)/ε). (23)

Taylor expansions of LN
ε F (xj) around xj and (23) permit us to prove

LN
ε F (xj) = LεF (xj) +O(ε−1(hj/ε)

2e−2α(1−xj)/ε), N/2 + jψ ≤ j ≤ N − 1. (24)
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Using the Shishkin decomposition of the continuous problem (1) (see [3]), the bounds (16) for
the derivatives of w and appropriate Taylor expansion, we deduce

LN
ε [WN

j − w(xj)] = w′′′
j

(
h3

j+1

3!
r+
j −

h3
j

3!
r−j − q1

j hjε + q1
j

h2
j

2
aj−1

)
+

+
h4

j+1

4!
r+
j w(4)(δ) +

h4
j

4!
r−j w(4)(α1) + q1

j

h2
j

2
εw(4)(α2)− q1

j

h3
j

3!
aj−1w

(4)(α3)−

−q1
j bj−1

h3
j

3!
w(3)(α4) = (hj/ε)

2ε2w′′′
j

(
h3

j+1

3!h2
j

r+
j −

hj

3!
r−j − q1

j

ε

hj

+ q1
j

aj−1

2

)
+

+O(ε−1(hj/ε)
2e−2α(1−xj)/ε),

(25)

where αi ∈ (xj−1, xj), i = 1, 2, 3, 4, and δ ∈ (xj, xj+1). From (22), (24) and (25), it follows

(hj/ε)
2LN

ε F (xj) = (hj/ε)
2LεF (xj) +O(ε−1(hj/ε)

4e−2α(1−xj)/ε) =
= LN

ε [WN
j − w(xj)] +O(ε−1(hj/ε)

4e−2α(1−xj)/ε).

Therefore,

|LN
ε [WN

j − w(xj)− (hj/ε)
2F (xj)]| = O(ε−1(hj/ε)

4e−2α(1−xj)/ε). (26)

Taking the barrier function

ξj(β) = C
(
N−βσ0(1 + xj) + (hj/ε)

4 φj(β)
)
,

where C is a positive constant large enough, it holds that

LN
ε ξj(β) ≥ |LN [WN

j − w(xj)− (hj/ε)
2F (xj)]|, N/2 + jψ ≤ j ≤ N − 1,

ξN/2+jψ−1(β) ≥ |WN
N/2+jψ−1 − w(xN/2+jψ−1)− (hj/ε)

2F (xN/2+jψ−1)|,
ξN(β) ≥ |WN

N − w(1)− (hj/ε)
2F (1)| = 0.

Finally, using the discrete maximum principle on [xN/2+jψ−1, 1], we obtain

|WN
j − w(xj)− (hj/ε)

2F (xj)| ≤ ξj ≤ C(N−βσ0 + (hj/ε)
4φj(β)) ≤

≤ O(N−βσ0 + (N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)4),

taking β such that βσ0 ≥ 4, which is the required result.

Lemma 6. Let σ0 be such that βσ0 ≥ 4. Then, the error associated to the singular component
satisfies

|w(xj)− W̄N
j | ≤ C(N−βσ0 + (N−1σ0 max

t∈[1/2,1]
|ψ′(t)|)4), N/2 + jψ ≤ j ≤ N − 1.

Proof. From Lemma 5 we have

w(xj)−WN
j = (hj/ε)

2F (xj) +O(N−βσ0 + (N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)4),

w(xj)− W̃ 2N
j = ((hj/ε)

2/4)F (xj) +O(N−βσ0 + (N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)4).

Therefore, it immediately follows

w(xj)− W̄N
j = O(N−βσ0 + (N−1σ0 max

t∈[1/2,1]
|ψ′(t)|)4), N/2 + jψ ≤ j ≤ N − 1.



176 J.L. Gracia and C. Clavero

From Lemmas 3, 4 and 6 we obtain the main result of this work.

Theorem 2. Let σ0 be such that βσ0 ≥ 4, u the solution of the continuous problem (1), {Ūj}N
j=0

the extrapolated numerical solution defined by (15) and we assume that ε ≤ CN−1. Then, the
error satisfies

|u(xj)− ŪN
j | ≤

⎧⎪⎨⎪⎩
C((ε + N−2)N−1 + N−βσ0), if 1 ≤ j < N/2 + jψ,
C((ε + N−2)N−1 + N−βσ0+

+(N−1σ0 max
t∈[1/2,1]

|ψ′(t)|)4), if N/2 + jψ ≤ j ≤ N − 1.
(27)

Remark 2. From Theorem 2 we deduce that, if the diffusion parameter is sufficiently small with
respect to the discretization parameter (ε ≤ CN−2) and β satisfies βσ0 ≥ 3, the extrapolated
solution converges with third order on S-B and S-B modified mesh and with order near three
on S-mesh.

§4. Numerical examples

We consider the test problem:

−εu′′ + u′ + (ex + 1− x3)u = f,

where the source term f and the boundary conditions are such that the exact solution is

u(x, ε) = xe−(1−x)/ε + sin(x).

For any values of ε and N we calculate exactly the pointwise errors eε,N
j = |u(xj) − UN

j |,
0 ≤ j ≤ N , where {UN

j } is the numerical solution obtained with the HODIE finite difference
scheme. From these values, the maximum errors are Eε,N = max

0≤j≤N
eε,N

j and the numerical

order of convergence are pε,N = log(Eε,N/Eε,2N)/ log 2.
Table 1 shows the maximum errors and the numerical order of convergence of the HODIE

scheme on some particular generalized Shishkin meshes, taking ε = 10−8 and σ0 = 4.

Table 1: Errors and order of convergence without extrapolation

ε = 10−8 N=64 N=128 N=256 N=512 N=1024 N=2048

S-mesh 8.541E-3 2.840E-3 9.237E-4 2.917E-4 8.995E-5 2.721E-5
1.589 1.620 1.663 1.697 1.725

S-B mesh 1.268E-3 3.239E-4 8.170E-5 2.051E-5 5.138E-6 1.286E-6
1.969 1.987 1.994 1.997 1.999

S-B m. mesh 1.548E-3 4.095E-4 1.068E-5 2.763E-5 7.099E-6 1.816E-6
1.919 1.939 1.951 1.960 1.967

For the same values of ε and σ0, table 2 shows the results obtained using Richardson extrap-
olation. From both tables we see that the results are in agreement with the theoretical results.



Richardson extrapolation on generalized Shishkin meshes for singularly perturbed problems 177

Table 2: Errors and order of convergence with extrapolation

ε = 10−8 N=64 N=128 N=256 N=512 N=1024 N=2048

S-mesh 6.388E-5 7.406E-6 7.936E-7 7.919E-8 7.541E-9 6.898E-10
3.109 3.222 3.325 3.392 3.451

S-B mesh 3.597E-6 2.547E-7 1.767E-8 1.209E-9 8.254E-11 5.912E-12
3.820 3.850 3.869 3.872 3.803

S-B m. mesh 2.735E-6 7.924E-8 5.178E-9 3.748E-10 2.566E-11 2.054E-12
5.109 3.844 3.880 3.867 3.642

Moreover, table 2 gives better results than Theorem 2 proves; the reason is that, for this ex-
ample, the maximum errors are associated to the singular component of the exact solution and
therefore the order is given by Lemma 6.

In second place, we take σ0 = 4 and ε = 10−4, for which the restriction ε < N−2 is violated.
Table 3 shows the results obtained without extrapolation, in agreement with the theoretical
results.

Table 3: Errors and order of convergence without extrapolation

ε = 10−4 N=64 N=128 N=256 N=512 N=1024 N=2048

S-mesh 8.538E-3 2.839E-3 9.234E-4 2.916E-4 8.993E-5 2.721E-5
1.589 1.620 1.663 1.697 1.725

S-B mesh 1.267E-3 3.238E-4 8.171E-5 2.053E-5 5.153E-6 1.294E-6
1.969 1.987 1.993 1.994 1.993

S-B m. mesh 1.547E-3 4.093E-4 1.068E-4 2.764E-5 7.113E-6 1.824E-6
1.919 1.938 1.950 1.958 1.963

For these same values, table 4 gives the results associated to the extrapolation; from it we
see that for all meshes, principally for S-B and S-B modified meshes, the numerical order of
convergence is reduced. Nevertheless, the errors are smaller than in table 3, which is important
in practice applications of the method.

Table 4: Errors and order of convergence with extrapolation

ε = 10−4 N=64 N=128 N=256 N=512 N=1024 N=2048

S-mesh 6.380E-5 7.373E-6 7.763E-7 7.065E-8 9.485E-9 4.741E-9
3.113 3.247 3.458 2.897 1.000

S-B mesh 3.722E-6 3.212E-7 5.131E-8 1.897E-8 9.485E-9 4.741E-9
3.535 2.646 1.435 1.000 1.000

S-B m. mesh 2.859E-6 1.467E-7 3.925E-8 1.897E-8 9.485E-9 4.741E-9
4.285 1.902 1.049 1.000 1.000



178 J.L. Gracia and C. Clavero

Acknowledgements

This research has been partially supported by MCYT/FEDER Project BFM2001–2521

References

[1] C. CLAVERO, J.L. GRACIA, F. LISBONA High order methods on Shishkin meshes for singular
perturbation problems of convection-diffusion type. Numerical Algorithms, 22 (1999), 73–97.

[2] C. CLAVERO, J.L. GRACIA HODIE finite difference schemes on generalized Shishkin meshes. To
appear in J. Comp. Appl. Math. (2004).

[3] P. FARRELL, A. HEGARTY, J.J.H. MILLER, E. O’RIORDAN, G.I. SHISHKIN Robust computa-
tional techniques for boundary layers. CRC Press, 2000.

[4] A. FRÖHNER, T. LINSS, H.G. ROOS Defect correction on Shishkin–type meshes. Numerical Algo-
rithms, 26 (2001), 281–299.

[5] H.B. KELLER Accurate difference methods for ordinary differential systems subject to linear con-
straints. SIAM J. Numer. Anal., 6 (1969), 8–30.

[6] H.B. KELLER Numerical methods for two-point boundary value problems. Dover Publications Inc,
New York, 1992.

[7] M.C. NATIVIDAD, M. STYNES Richardson extrapolation for a convection–diffusion problem using
a Shishkin mesh. Appl. Numer. Math., 45 (2003), 315-329.

[8] H.G. ROOS, T. LINSS Sufficient conditions for uniform convergence on layer-adapted grids. Com-
puting, 63 (1999), 27–45.

J.L. Gracia
Departamento de Matemática Aplicada
Universidad de Zaragoza
Escuela Universitaria Politécnica, Ciudad Escolar, s/n, 44003, Teruel (Spain)
jlgracia@unizar.es

C. Clavero
Departamento de Matemática Aplicada
Universidad de Zaragoza
Centro Politécnico Superior, María de Luna 3, 50018, Zaragoza (Spain)
clavero@unizar.es


