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Abstract. The authors provide a numerical method in order to approximate the solution
of a linear initial-value problem, by means of von Neumann series and Faber—Schauder
systems.
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81. Preliminaries

In this work some results are discussed in order to approximate the solution of the following
initial-value problem: given zy € R™, a € C(|o, @ + G], M,,(R)) (M,,(R) is the set of all
n x n real matrices) and b € C([a, a + 3], R"), find z € C' ([, a + B], R™) such that

{ () =a(t)x(t) + b(t), tE€ o, a+ 0] (0.1)

z(a) = xg '

For the sake of simplicity we shall assume that « = 0 and 5 = 1.
It is an elementary and well-known fact that the unique solution « of the initial-value
problem above is characterised by the equality

u= f+ Lu, (0.2)

where .
fi=umx0 +/ b(s)ds
0

and L is the bounded and linear operator defined on the Banach space C(]0, 1], R™), endowed
with its usual sup-sup norm ( [|z{|« := supepq [2(t)[los  (z € C([0, 1],R™))) by

Lz(t) := /0 a(s)x(s)ds, (x € C([0,1],R")), 0 <t <1).
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Form now on, we shall understand f and L to be such function and operator. On the other hand,
since operator L satisfies that for all z € C(]0, 1], R™)) and for all m > 1

m 1 m
170w < M, (03)

where M := maxo<i<1 [|a(?)||oo, We have that the series » | -, L™ converges. Then, it follows
from the geometric series theorem [2] that operator I — L is one-to—one and onto and its inverse
operator (I — L)~! is bounded and linear. In fact

(I—L)t=>Lm

m>0

the so—called von Neumann series of L. Hence, in view of (0.2) we deduce that the unique
solution of problem (0.1) is given by

u=>y L"f. (0.4)

m>0

Hence, letting
so=f

and form > 1

Sm = Zka = f + Lsm—h
k=0

then the sequence {s,, }m>o converges uniformly to «. Moreover, we derive from (0.3) and (0.4)

that Ak
o= smllse < Iflle R (0.5)

k>m+1
In order to obtain the sequence {s,, }.»>o We shall make of the usual Faber—Schauder systems
in the space C'([0, 1]).

Let us recall ([3]) that a sequence {z;};>; in a Banach space X is said to be a Schauder basis
provided that for all z € X there exists a unique sequence of scalars {A; },>; in such a way that
T =) ;51 Ajxj. The jth (continuous and linear) biorthogonal functional x; is defined at such
an x as zj(r) = \;, and the jth (continuous and linear) projection @Q; by Q;(z) = fle i

Now we introduce the classical Schauder basis for the space C/([0, 1]), endowed with its
usual sup—norm, the so—called Faber-Schauder system. Suppose that {¢;},>1 is a dense se-
quence of distinct points in [0, 1] such that t; = 0 and ¢, = 1. The classical Faber-Schauder
system {I'; },>1 (associated with {¢;},1) for the Banach space C([0, 1]) is defined as follows:

()=1, (0<t<1)

and for all j > 1, I'; is the piecewise linear continuous function with nodes at ¢4, . .., ¢;, such
that
forall1 <i<yj, TIj(t)=0

while
Lj(t;) =1
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In what follows, {I';};>, will denote such basis and {I'}};>; and {Q;};>1, respectively, the
associated sequences of biorthogonal functionals and projections. In the next statement we
collect some basic elementary facts that will play a fundamental role in our results. For a proof,
see [3] or [4].

Theorem 1. Let z € C([0,1]). Then
() = x(t1)

and for all j > 1,
I (x ZF*

In particular, for all 7 > 1 andfor all i < j,

(Qj)(t:) = (t:). (1.1)

82. The results

Let us point out that it is possible to obtain the image under operator L of any continuous func-
tion in terms of certain sequences of scalars, sequences which are obtained just by evaluating
some functions at adequate points. More precisely; we shall consider the sup—sup norm on the
space C'(]0, 1], M, (R)):

lallec == sup fla(t)llso,  (a € C([0, 1], Mn(R))).

te(0,1]
Letn > landassumethata = (a;;),; ,_, ,, € C([0,1], M, (R)),b = (b;),_, , € C([0,1],R")
and zp € R". Given 1 < j, k < n let {a§2}121 and {b}“}izl be the sequences of scalars satis-
fying
A = Z CLng)FZ and bj = Z by)F
i>1 i>1

Then, forall z = (z;),_, , € C([0,1],R") and for all ¢ € [0,1] it is not difficult to obtain,

integrating, that

77777

7 i—1 :

=1

In the following result we replace the sequence {s,, }>o by another {y,, },.>0 which can
be calculated explicitly:
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Theorem 2. Letn > 1andsupposethata = (ai;), ;_, ,, € C([0,1], M,(R)),b = (b;),_, .
C(]0,1],R™) and xy € R™. Letm > 1 andng,...,n,, > 1. Consider the continuous function

Yo(t) :=xo(t),  (t€[0,1])
and for r = 1, ..., m the continuous functions
pro1(t) = a(t)y.—1 () +0(t), (£ €[0,1]),

and

Assume in addition that certain positive numberse,, . .., &, satisfy

Hf + Lyr—l - yr”oo <é&r,

where L isthelinear integral operator on C'([0, 1], R™) associated with the initial—value prob-
lem (0.1) Then, if u isthe solution of such problem, we have that

M" M~ M
It =l < Wil 32T + ol S0+ 32y
where M = maxp<i<1 ||a(t)]|co-
Proof. Since
e = oo < Ml = (o + L7%0) oo + 1gm = (5ot + L7 20} ooy (2:1)

we shall separately obtain upper bounds for both terms on the left hand side in (2.1). On the
one hand, inequalities (0.5) and (0.3) give

MT M™
+ H%Hoom- (2.2)

= (51 + L™ @0) oo < 1t = Sm—1lloo + [ L Zolloc < [[flloc Y

r>m

r!
On the other hand, the hypothesis on the ¢,’s and inequality (0.3) give
||ym — Sm—1 — meOHOO = ”ym - f - Lf - L2f e T Lm_lf - Lmy(]Hco S
||ym - f - Lym—lnoo + ||Lym—1 - L.f - L2ym—2||oo+
||L2ym—2 - L2f - L3ym—3||oo + -+
Iy = L™ f = L™yl <
em + | Llem-1 + [ L*[lem—z + -+ + [IL™ " [lex <

m

Ze% (2.3)

Finally, the proof is complete in view of (2.1), (2.2) and (2.3). ]
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Note that given &;,...,¢,, > 0 we can find positive integers n4,...,n,, such that || f +
Ly,_1 — 4|l < &, since for all z € C([0,1]), lim;>; [|Qjz — z||oc = 0. However, if we
wish to find the integers m, nq, ..., n,, from the positive numbers ¢4, ..., ¢,,, we can use this

easy and well-known consequence of the mean value theorem and the interpolating property
(1.1) of the basis for C([0, 1]): suppose that = € C'*(]0,1]) (in fact, we can assume that z is a
continuous and C* class function on [0, 1], except perhaps for a finite number of points), j > 2
and

h:= max (s; — s;_1),
i=2,.0.r]

where {s; =0 < s < --- < sj_1 < s; = 1} isthe set {t1,...,¢;} ordered in a increasing
way. Then
|2 = Qjtlloo < 2|l och- (2.4)

If one assumes in the initial-value problem that a and b are functions of C" class on [0, 1] then
the norm appearing in Theorem 2, ||f + Ly,_1 — v/l Can be estimated as follows: ||f +
Remark 1. The Faber—Schauder system has also been used in [1] for solving numerically the
linear Volterra integro—differential equation.

Remark 2. Although our numerical method works for any Faber-Schauder system in the Ba-
nach space C'([0, 1]), we have chosen the classical one because the biorthogonal functionals
and the projections associated have an easy expression.

83. A numerical example

Finally we exhibit an example which shows the behaviour of our results. To this end, we

.....

,,,,,

1
h = 22%32(& —8i_1) = o

Then we calculate the sequences of coefficients {agik) »_, and {by) »_, and obtain recursively
the functions ¥, in Theorem 2, taking n; = - - - = n,, = n. We determine the errors

Enr = max |y, (s;) — u(s;)],

where u is the exact solution. We have considered the approximation of the exact solution y,,
in such a way that

<1+1072

‘ Enm
Enm+1

Let us point out that we do not need to solve systems of algebraical linear equations —
collocation methods- or to use quadrature formulas.

Example 1. The function y(¢) = arctant is the analytical solution of the second order equation

2t
"t t)=0
' (8) + )

y(0) =0
y'(0) =1
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If one associates, in the usual way, this problem with an initial-value problem in the form
(0.1) and applies the above results, he obtains the following table. In its columns we give
the absolute errors £, in nine representative points of the approximations v,,,, obtained with
different values of n.

m=9m=4) (n=17,m=6) (n=33,m=56)

0 0 0 0
0.125 | 3.01 x 1074 7.61 x 107° 1.90 x 10~°
0.250 | 4.98 x 1074 1.25 x 1074 3.14 x 107°
0.375 | 5.30 x 107* 1.33 x 107* 3.33 x 107°
0.500 | 4.05 x 1074 9.89 x 107° 2.47 x 107°
0.625 | 1.91 x 10~* 3.38 x 107° 8.55 x 1076
0.750 | 1.01 x 107° 477 x 107° 1.13 x 107
0.875 | 3.94 x107° 1.31 x 10~* 3.02 x 107°

1 5.32 x 1074 2.04 x 10~* 4.05 x 107
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