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Abstract. The authors provide a numerical method in order to approximate the solution
of a linear initial–value problem, by means of von Neumann series and Faber–Schauder
systems.
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§1. Preliminaries

In this work some results are discussed in order to approximate the solution of the following
initial–value problem: given x0 ∈ Rn, a ∈ C([α, α + β],Mn(R)) (Mn(R) is the set of all
n× n real matrices) and b ∈ C([α, α + β], Rn), find x ∈ C1([α, α + β], Rn) such that{

x′(t) = a(t)x(t) + b(t), t ∈ [α, α + β]
x(α) = x0

. (0.1)

For the sake of simplicity we shall assume that α = 0 and β = 1.
It is an elementary and well–known fact that the unique solution u of the initial–value

problem above is characterised by the equality

u = f + Lu, (0.2)

where

f := x0 +

∫ t

0

b(s)ds

and L is the bounded and linear operator defined on the Banach space C([0, 1], Rn), endowed
with its usual sup–sup norm ( ‖x‖∞ := supt∈[0,1] ‖x(t)‖∞, (x ∈ C([0, 1], Rn))) by

Lx(t) :=

∫ t

0

a(s)x(s)ds, (x ∈ C([0, 1], Rn)), 0 ≤ t ≤ 1).
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Form now on, we shall understand f and L to be such function and operator. On the other hand,
since operator L satisfies that for all x ∈ C([0, 1], Rn)) and for all m ≥ 1

‖Lmx‖∞ ≤
1

m!
Mm‖x‖∞, (0.3)

where M := max0≤t≤1 ‖a(t)‖∞, we have that the series
∑

m≥0 Lm converges. Then, it follows
from the geometric series theorem [2] that operator I−L is one–to–one and onto and its inverse
operator (I − L)−1 is bounded and linear. In fact

(I − L)−1 =
∑
m≥0

Lm,

the so–called von Neumann series of L. Hence, in view of (0.2) we deduce that the unique
solution of problem (0.1) is given by

u =
∑
m≥0

Lmf. (0.4)

Hence, letting
s0 = f

and for m ≥ 1

sm =
m∑

k=0

Lkf = f + Lsm−1,

then the sequence {sm}m≥0 converges uniformly to u. Moreover, we derive from (0.3) and (0.4)
that

‖u− sm‖∞ ≤ ‖f‖∞
∑

k≥m+1

Mk

k!
. (0.5)

In order to obtain the sequence {sm}m≥0 we shall make of the usual Faber–Schauder systems
in the space C([0, 1]).

Let us recall ([3]) that a sequence {xj}j≥1 in a Banach space X is said to be a Schauder basis
provided that for all x ∈ X there exists a unique sequence of scalars {λj}j≥1 in such a way that

x =
∑

j≥1 λjxj. The jth (continuous and linear) biorthogonal functional x∗
j is defined at such

an x as x∗
j(x) = λj, and the jth (continuous and linear) projection Qj by Qj(x) =

∑j
i=1 λixi.

Now we introduce the classical Schauder basis for the space C([0, 1]), endowed with its
usual sup–norm, the so–called Faber–Schauder system. Suppose that {tj}j≥1 is a dense se-
quence of distinct points in [0, 1] such that t1 = 0 and t2 = 1. The classical Faber–Schauder
system {Γj}j≥1 (associated with {tj}j≥1) for the Banach space C([0, 1]) is defined as follows:

Γ1(t) = 1, (0 ≤ t ≤ 1)

and for all j > 1, Γj is the piecewise linear continuous function with nodes at t1, . . . , tj, such
that

for all 1 ≤ i < j, Γj(ti) = 0

while
Γj(tj) = 1.
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In what follows, {Γj}j≥1 will denote such basis and {Γ∗
j}j≥1 and {Qj}j≥1, respectively, the

associated sequences of biorthogonal functionals and projections. In the next statement we
collect some basic elementary facts that will play a fundamental role in our results. For a proof,
see [3] or [4].

Theorem 1. Let x ∈ C([0, 1]). Then

Γ∗
1(x) = x(t1)

and for all j > 1,

Γ∗
j(x) = x(tj)−

j−1∑
i=1

Γ∗
i (x)Γi(tj).

In particular, for all j ≥ 1 and for all i ≤ j,

(Qjx)(ti) = x(ti). (1.1)

§2. The results

Let us point out that it is possible to obtain the image under operator L of any continuous func-
tion in terms of certain sequences of scalars, sequences which are obtained just by evaluating
some functions at adequate points. More precisely; we shall consider the sup–sup norm on the
space C([0, 1],Mn(R)):

‖a‖∞ := sup
t∈[0,1]

‖a(t)‖∞, (a ∈ C([0, 1],Mn(R))).

Let n ≥ 1 and assume that a = (aij)i,j=1,...n ∈ C([0, 1],Mn(R)), b = (bj)j=1,...,n ∈ C([0, 1], Rn)

and x0 ∈ Rn. Given 1 ≤ j, k ≤ n let {a(i)
jk}i≥1 and {b(i)

j }i≥1 be the sequences of scalars satis-
fying

ajk =
∑
i≥1

a
(i)
jk Γi and bj =

∑
i≥1

b
(i)
j Γi.

Then, for all x = (xj)j=1,...,n ∈ C([0, 1], Rn) and for all t ∈ [0, 1] it is not difficult to obtain,
integrating, that

f(t) + (Lx)(t) = x0 +

(∑
i≥1

c
(i)
j

∫ t

α

Γi(s)ds

)
j=1,...,n

,

where for j = 1, . . . , n,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c
(1)
j = b

(1)
j +

n∑
k=1

a
(1)
jk xk(t1)

c
(i)
j =

i∑
l=1

(
b
(l)
j +

n∑
k=1

a
(l)
jkxk(ti)

)
Γk(ti)−

i−1∑
l=1

c
(l)
j Γl(ti), if i ≥ 2

.

In the following result we replace the sequence {sm}m≥0 by another {ym}m≥0 which can
be calculated explicitly:
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Theorem 2. Let n ≥ 1 and suppose that a = (aij)i,j=1,...n ∈ C([0, 1],Mn(R)), b = (bj)j=1,...,n ∈
C([0, 1], Rn) and x0 ∈ Rn. Let m ≥ 1 and n1, . . . , nm ≥ 1. Consider the continuous function

y0(t) := x0(t), (t ∈ [0, 1])

and for r = 1, . . . , m the continuous functions

ϕr−1(t) := a(t)yr−1(t) + b(t), (t ∈ [0, 1]),

and

yr(t) := x0 +

∫ t

0

(Qnr(ϕr−1(s))k)k=1,...,nds, (t ∈ [0, 1]).

Assume in addition that certain positive numbers ε1, . . . , εm satisfy

‖f + Lyr−1 − yr‖∞ < εr,

where L is the linear integral operator on C([0, 1], Rn) associated with the initial–value prob-
lem (0.1) Then, if u is the solution of such problem, we have that

‖u− ym‖∞ ≤ ‖f‖∞
∑
r≥m

M r

r!
+ ‖x0‖∞

Mm

m!
+

m∑
r=1

εr
Mm−r

(m− r)!
,

where M = max0≤t≤1 ‖a(t)‖∞.

Proof. Since

‖u− ym‖∞ ≤ ‖u− (sm−1 + Lmx0)‖∞ + ‖ym − (sm−1 + Lmx0)‖∞, (2.1)

we shall separately obtain upper bounds for both terms on the left hand side in (2.1). On the
one hand, inequalities (0.5) and (0.3) give

‖u− (sm−1 + Lmx0)‖∞ ≤ ‖u− sm−1‖∞ + ‖Lmx0‖∞ ≤ ‖f‖∞
∑
r≥m

M r

r!
+ ‖x0‖∞

Mm

m!
. (2.2)

On the other hand, the hypothesis on the εr’s and inequality (0.3) give

‖ym − sm−1 − Lmx0‖∞ = ‖ym − f − Lf − L2f − . . .− Lm−1f − Lmy0‖∞ ≤

‖ym − f − Lym−1‖∞ + ‖Lym−1 − Lf − L2ym−2‖∞+

‖L2ym−2 − L2f − L3ym−3‖∞ + · · ·+
‖Lm−1y1 − Lm−1f − Lmy0‖∞ ≤

εm + ‖L‖εm−1 + ‖L2‖εm−2 + · · ·+ ‖Lm−1‖ε1 ≤
m∑

r=1

εr
Mm−r

(m− r)!
. (2.3)

Finally, the proof is complete in view of (2.1), (2.2) and (2.3).
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Note that given ε1, . . . , εm > 0 we can find positive integers n1, . . . , nm such that ‖f +
Lyr−1 − yr‖∞ < εr, since for all x ∈ C([0, 1]), limj≥1 ‖Qjx − x‖∞ = 0. However, if we
wish to find the integers m,n1, . . . , nm from the positive numbers ε1, . . . , εm, we can use this
easy and well–known consequence of the mean value theorem and the interpolating property
(1.1) of the basis for C([0, 1]): suppose that x ∈ C1([0, 1]) (in fact, we can assume that x is a
continuous and C1 class function on [0, 1], except perhaps for a finite number of points), j ≥ 2
and

h := max
i=2,...,j

(si − si−1),

where {s1 = 0 < s2 < · · · < sj−1 < sj = 1} is the set {t1, . . . , tj} ordered in a increasing
way. Then

‖x−Qjx‖∞ ≤ 2‖x′‖∞h. (2.4)

If one assumes in the initial–value problem that a and b are functions of C1 class on [0, 1] then
the norm appearing in Theorem 2, ‖f + Lyr−1 − yr‖∞ can be estimated as follows: ‖f +
Lyr−1 − yr‖∞ ≤ ‖ϕr − (Qnr (ϕr)k)k=1,...,n

‖∞ and then above applies.

Remark 1. The Faber–Schauder system has also been used in [1] for solving numerically the
linear Volterra integro–differential equation.

Remark 2. Although our numerical method works for any Faber–Schauder system in the Ba-
nach space C([0, 1]), we have chosen the classical one because the biorthogonal functionals
and the projections associated have an easy expression.

§3. A numerical example

Finally we exhibit an example which shows the behaviour of our results. To this end, we
fix the data’s initial–value problem: x0 ∈ Rn, a = (aij)ij=1,...,n ∈ C1([0, 1],Mn(R)) and
b = (bj)j=1,...,n ∈ C1([0, 1], Rn). We choose an n ∈ N with n = 2k + 1, k ∈ N, and thus

h = max
2≤i≤n

(si − si−1) =
1

2k
.

Then we calculate the sequences of coefficients {a(i)
jk}n

i=1 and {b(i)
j }n

i=1 and obtain recursively
the functions yr in Theorem 2, taking n1 = · · · = nr = n. We determine the errors

Enr = max
i
|yr(si)− u(si)|,

where u is the exact solution. We have considered the approximation of the exact solution ym

in such a way that ∣∣∣∣ Enm

Enm+1

∣∣∣∣ < 1 + 10−2.

Let us point out that we do not need to solve systems of algebraical linear equations –
collocation methods– or to use quadrature formulas.

Example 1. The function y(t) = arctan t is the analytical solution of the second order equation⎧⎪⎨⎪⎩
y′′(t) +

2t

1 + t2
y(t) = 0

y(0) = 0
y′(0) = 1

.
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If one associates, in the usual way, this problem with an initial–value problem in the form
(0.1) and applies the above results, he obtains the following table. In its columns we give
the absolute errors Enm in nine representative points of the approximations ym, obtained with
different values of n.

(n = 9, m = 4) (n = 17, m = 6) (n = 33, m = 6)
0 0 0 0

0.125 3.01× 10−4 7.61× 10−5 1.90× 10−5

0.250 4.98× 10−4 1.25× 10−4 3.14× 10−5

0.375 5.30× 10−4 1.33× 10−4 3.33× 10−5

0.500 4.05× 10−4 9.89× 10−5 2.47× 10−5

0.625 1.91× 10−4 3.38× 10−5 8.55× 10−6

0.750 1.01× 10−5 4.77× 10−5 1.13× 10−5

0.875 3.94× 10−5 1.31× 10−4 3.02× 10−5

1 5.32× 10−4 2.04× 10−4 4.05× 10−5
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