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Abstract

In this paper we present a review of some results about inference based on

φ-divergence measures, under assumptions of multinomial sampling and loglinear

models. The minimum φ-divergence estimator, which is seen to be a generalization

of the maximum likelihood estimator is considered. This estimator is used in a φ-

divergence measure which is the basis of new statistics for solving three important

problems of testing regarding loglinear models: Goodness-of-fit, nested sequence of

loglinear models and nonadditivity in loglinear models.

Keywords: Chi-squared distribution; contiguous alternatives; multinomial dis-

tribution; nested hypotheses; noncentral chi-squared distribution; φ-divergence sta-

tistic, power-divergence statistic.

1 Introduction

Let Y1, Y2, ..., Yn be a sample of size n ≥ 1, with realizations from X = {1, 2, ...,M} and

independent and identically distributed (i.i.d.) according to a probability distribution

p (θ0). This distribution is assumed to be unknown, but belonging to a known family

P =
{

p (θ) = (p1 (θ) , ..., pk (θ))T : θ ∈ Θ
}
,

of distributions on X with Θ ⊆ RM0 (M0 < M − 1) , and

P ⊂ ∆M =

{
p = (p1, ..., pM)T : 0 < pi < 1,

M∑
i=1

pi = 1

}
.

In other words, the true value θ0 of parameter θ = (θ1, ..., θM0)
T ∈ Θ ⊆ RM0 is assumed

to be fixed but unknown. We denote p = (p1, ..., pM)T and p̂ = (p̂1, ..., p̂M)T with

p̂j =
Nj

n
and Nj =

n∑
i=1

I{j} (Yi) ; j = 1, ...,M. (1)
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The statistic (N1, ..., NM) is obviously sufficient for the statistical model under consider-

ation and is multinomially distributed; that is,

P (N1 = n1, ..., NM = nM) =
n!

x1!...xM !
p1 (θ)n1 × ...× pM (θ)nM , (2)

for integers n1, ..., nM ≥ 0 such that n1 + ...+ nM = n.

In what follows, we assume that p (θ) belongs to the general class of loglinear models.

That is, we assume :

pu (θ) = exp
(
wTu θ

)
/

M∑
v=1

exp
(
wTv θ

)
; u = 1, ...,M, (3)

where the M × M0 matrix W = (w1, ..., wM)T is assumed to have full column rank

M0 < M − 1 and columns linearly independent of the M × 1 column vector (1, ..., 1)T .

This will be the model we shall consider for the theoretical results in the next sections.

If we denote by u∗ = − log

(
k∑
v=1

exp
(
wTv θ

))
, we can consider the matricial expression

of the loglinear model given in (3) given by,

log p (θ∗) = Xθ∗ (4)

where X is a M × (M0 + 1) matrix with

X = (1M×1,WM×M0) ,

log p (θ∗) = (log p1 (θ∗) , ..., log pM (θ∗))T and θ∗ = (u∗, θ1, ..., θM0)
T . We can express the

loglinear model (4) by

log m (θ∗∗) = Xθ∗∗,

where m (θ∗∗) = np (θ∗) , θ∗∗ = (u, θ1, ..., θt)
T with u = u∗ + log n and

log m (θ∗∗) = (logm1 (θ∗∗) , ..., logmM (θ∗∗))T .

Therefore given a M × tA matrix XA with rank(XA) = tA, the set

C (XA) =
{
log p (θ) : log p (θ) = XAθ; θ ∈ RtA

}
,

represent the class of loglinear models associated to the matrix XA. An important as-

sumption for the purpose of normalization is that the M × 1 dimensional vector JM ≡
(1, ..., 1)T ∈ C (XA) . We can observe that p (θ) ∈ C (XA) is equivalent to log m (θ) ∈
C (XA) with m (θ) = np (θ) because

log m (θ) = log p (θ) + log nJM .
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Kullback-Leibler divergence measure, between two loglinear models p (θ1) and p (θ2) ∈
P and verifying (3) is given by

DKull (p (θ1) ,p (θ2)) =
k∑
i=1

pi (θ1) log
pi (θ1)

pi (θ2)
.

But this measure of divergence is a particular case of the φ−divergence measures defined

by Csiszár (1963) and Ali and Silvey (1966), by

Dφ (p (θ1) ,p (θ2)) ≡
k∑
i=1

pi (θ2)φ

(
pi (θ1)

pi (θ2)

)
;φ ∈ Φ∗, (5)

where Φ∗ is the class of all convex functions φ (x) , x > 0, such that at x = 1, φ (1) =

0, φ′′ (1) > 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) = limu→∞ φ (u) /u. For every φ ∈ Φ∗

that is differentiable at x = 1, the function

ψ (x) ≡ φ (x)− φ′ (1) (x− 1)

also belongs to Φ∗. Then we have Dψ (p (θ1) ,p (θ2)) = Dφ (p (θ1) ,p (θ2)) , and ψ has the

additional property that ψ′ (1) = 0. Because the two divergence measures are equivalent,

we can consider the set Φ∗ to be equivalent to the set

Φ ≡ Φ∗ ∩ {φ : φ′ (1) = 0} .

In what follows, we give our theoretical results for φ ∈ Φ, but we often apply them to

choices of functions in Φ∗. In the next several paragraphs, we give the essential details

of the framework for estimation and hypothesis testing on loglinear models based on φ-

divergences. We can observe that for φ (x) = x log x−x+1 we obtain the Kullback-Leibler’

divergence.

An important family of φ−divergences in statistical problems is the power-divergence

family,

φ(λ) (x) = (λ (λ+ 1))−1 (xλ+1 − x
)
; λ 6= 0, λ 6= −1,

φ(0) (x) = limλ→0 φ(λ) (x) = x log x− x+ 1,

φ(−1) (x) = limλ→−1 φ(λ) (x) = log x− x+ 1,

(6)

which was introduced and studied by Cressie and Read (1984). We can observe that the

functions φ(λ) (x) and ψ(λ) (x) ≡ φ(λ) (x) − (x− 1) (λ+ 1)−1define the same divergence

measure. In the following, we shall denote the power-divergence measures by,

Iλ (p (θ1) ,p (θ2)) ≡ Dφ(λ)
(p (θ1) ,p (θ2)) = Dψ(λ)

(p (θ1) ,p (θ2)) .

We can observe that

I0 (p (θ1) ,p (θ2)) = Dφ(0)
(p (θ1) ,p (θ2))

coincides with DKull (p (θ1) ,p (θ2)) .
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2 Minimum φ−divergence estimators under the Log-

linear Model

In this Section we present some asymptotic results for the minimum φ-divergence estima-

tor under the loglinear model (3). It is well-known that the Fisher information matrix in

the multinomial model considered (2) is given by IF (θ) = A (θ)T A (θ) , where A (θ) is a

M ×M0 matrix given by

A (θ) = diag
(
p (θ)−

1
2

)
M×M

(
∂pi (θ)

∂θr

)
i = 1, ...,M, r = 1, ...,M0.

For the loglinear models we have

∂pi (θ)

∂θr
= pj (θ)wrj − pj (θ)

k∑
v=1

wrvpv (θ) .

Then
∂p (θ)

∂ (θ)
=
(
diag (p (θ))− p (θ) p (θ)T

)
W = Σp(θ)W

and hence A (θ) = diag
(
p (θ)−

1
2

)
M×M

Σp(θ)W. Then the Fisher information matrix for a

loglinear model is given by

IF (θ) = W TΣp(θ)W.

It is also well-known that the maximum likelihood estimator for multinomial model consid-

ered in (2) can be obtained as the value θ̂ ∈ Θ minimizing the Kullback-Leibler divergence

measure, with respect to θ, between the loglinear model p (θ) ∈ P verifying (3) and the

nonparametric estimator of the model p̂, i.e., the estimator of the saturated model. As

a generalization of the maximum likelihood estimator we can consider the minimum φ-

divergence estimator as the value θ̂φ ∈ Θ minimizing, with respect to θ, the φ-divergence

measure, Dφ (p̂,p (θ)) , i.e.,

θ̂φ ≡ arg min
θ∈Θ

Dφ (p̂,p (θ)) . (7)

Cressie, N. and Pardo, L (2000) established, based on a previous result given in Morales, D.

et al. (1995) for multinomial models, the following BAN descomposition for the minimum

φ-divergence estimator, θ̂φ, of the parameter θ in the loglinear model p (θ) ,

θ̂φ = θ0 + IF (θ0)
−1 Σp(θ0)diag

(
I(θ0)

−1
)
(p̂− p(θ0)) + oP (‖ p̂− p(θ0) ‖) (8)

where Σp(θ0) = diag (p(θ0)) − p(θ0)p(θ0)
T . Based on this result it was also established

that

n1/2
(
θ̂φ − θ0

)
L−→

n→∞
N
(
0,
(
W TΣp(θ0)W

)−1
)
.
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Another interesting result, useful later, is the following

n1/2
(
p
(
θ̂φ

)
− p (θ0)

)
L−→

n→∞
N
(
0,Σp(θ0)W

(
W TΣp(θ0)W

)−1
W TΣp(θ0)

)
.

¿From a practical point of view we have to solve the following system of equations
∂Dφ (p̂,p (θ))

∂θi
= 0

i = 1, ...,M0

,

to find the minimum φ-divergence estimator θ̂φ.

These equations are nonlinear functions of the minimum φ−divergence estimator, θ̂φ.

In order to solve these equations numerically the Newton-Raphson method is used. We

have, (
∂Dφ

(
p̂,p

(
θ(t)
))

∂θj

)
θ=θ(t)

=
M∑
l=1

{
φ

(
p̂l

pl(θ(t))

)
− φ′

(
p̂l

pl(θ(t))

)
p̂l

pl(θ(t))

}
×

×
(
pl
(
θ(t)
)
wlj − pl

(
θ(t)
) M∑
u=1

wujpu
(
θ(t)
))

,

and

∂

∂θr

(
∂Dφ(p̂,p(θ(t)))

∂θj

)
=

M∑
l=1

φ′′
(

p̂l
pl(θ(t))

)
p̂l

pl(θ(t))2

∂pl(θ
(t))

∂θr

∂pl(θ
(t))

∂θj

p̂l
pl(θ(t))

+
k∑
l=1

∂2pl(θ
(t))

∂θj∂θr

(
φ

(
p̂l

pl(θ(t))

)
− φ′

(
p̂l

pl(θ(t))

)
p̂l

pl(θ(t))

)
.

(9)

Therefore the (t + 1)th step estimate, θ̂(t+1), in a Newton-Raphson procedure is ob-

tained from θ̂(t) as

θ̂(t+1) = θ̂(t) −

(
∂Dφ

(
p̂, p

(
θ(t)
))

∂θj

)T

θ=θ(t)

G
(
θ(t)
)−1

,

where G
(
θ(t)
)

is the dimension matrix whose elements are defined in (9). A interesting

simulation study to analyze behavior of the minimum power-divergence estimator, defined

by

θ̂(λ) ≡ arg min
θ∈Θ

Iλ (p̂,p (θ)) , (10)

in a three dimensional contingence table, has been considered in Pardo, L. and Pardo,

M. C. (2003). Notice that θ̂(0) is the MLE, as we observed in (6) . Other estimators

(less well known than the MLE) that are members of the family of minimum power-

divergence estimators are: the minimum chi-squared estimator (Neyman, 1949) for λ = 1;

the minimum modified chi-squared estimator (Neyman, 1949) for λ = −2; the modified

473



MLE or minimum discrimination information estimator (Kullback, 1985) for λ = −1;

the minimum Matusita distance (or Hellinger distance) estimator (Matusita, 1954) for

λ = −1/2; and the minimum Cressie-Read distance estimator (Cressie and Read, 1984)

for λ = 2/3.

3 Testing hypotheses in loglinear models

For testing if our data can be justified by a loglinear model (goodness-of-fit test), i.e.,

HNull : p = p (θ) ∈ P versus HAlter : p ∈ ∆M − P (11)

we can use the test statistics

T φ1
n

(
θ̂φ2

)
=

2n

φ′′1 (1)
Dφ1

(
p̂,p

(
θ̂φ2

))
.

When T φ1
n

(
θ̂φ2

)
> c, we should reject HNull in (11), where c is specified so that the size

of the test is α :

Pr
(
T φ1
n

(
θ̂φ2

)
> c | Hl+1

)
= α; α ∈ (0, 1) .

The result estasblished in Morales, D.et al. (1995) for general multinomial models can

be adapted to the context of loglinear models. Under (2), (3) and HNull : p = p (θ) ∈ P ,
the test statistic T φ1

n

(
θ̂φ2

)
converges in distribution to a chi-squared distribution with

M−M0−1 degrees of freedom (χ2
M−M0−1). Therefore, c could be chosen as the (1− α)-th

quantile of a χ2
M−M0−1 distribution:

c = χ2
M−M0−1 (1− α) ,

where Pr
(
χ2
f ≤ χ2

f (p)
)

= p.

One of the main problems in loglinear models is to test a nested sequence of hypotheses,

Hl : p = p (θ) ; θ ∈ Θl; l = 1, ...,m, m ≤M0 < M − 1, (12)

where Θm ⊂ Θm−1 ⊂ ... ⊂ Θ1 ⊂ RM0 ; M0 < M − 1 and dim(Θl) = dl; l = 1, ...,m, with

dm < dm−1 < ... < d1 ≤M0. (13)

Our strategy will be to test successively the hypotheses

Hl+1 against Hl; l = 1, ...,m− 1, (14)

as null and alternative hypotheses respectively. We continue to test as long as the null

hypothesis is accepted and choose the loglinear model Θl according to the first l for which

Hl+1 is rejected (as a null hypothesis) in favor of Hl (as an alternative hypothesis). This

strategy is quite standard for nested models (Read and Cressie, 1988, p. 42). The nesting

occurs naturally because of the hierarchical principle, which says that interactions should

not be fitted unless the corresponding main effects are present (e.g., Collett, 1994, p.78).
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Theorem 1 Suppose that data (N1, ..., NM) are multinomially distributed according to

(2) and (3). Consider the nested sequence of hypotheses given by (12) and (13). Choose

the two functions φ1, φ2 ∈ Φ. Then, for testing hypotheses,

H0 : Hl+1 against H1 : Hl,

the asymptotic null distribution of the test statistic,

T
(l)
φ1,φ2

≡ 2n

φ′′1 (1)
Dφ1

(
p
(
θ̂

(l+1)
φ2

)
,p
(
θ̂

(l)
φ2

))
(15)

is chi-squared with dl − dl+1 degrees of freedom; l = 1, ...,m − 1. In (15), θ̂
(l)
φ2

and θ̂
(l+1)
φ2

are the minimum φ2−divergence estimators under the models Hl and Hl+1, respectively,

where the minimum φ-divergence estimators are defined by (5).

The two most commonly used test statistics in (15) are the Pearson statistic, corre-

sponding to φ1 (x) = 1
2
(x− 1)2 and φ2 (x) = x log x− x + 1, and the log-likelihood ratio

statistic, corresponding to φ1 (x) = φ2 (x) = x log x − x + 1φ1 ≡ φ(0) (e.g., Christensen,

1997, p. 338). The asymptotic null distribution of both of these statistics is a central

chi-squared distribution with dl − dl+1 degrees of freedom. We should reject the null

hypothesis if T
(l)
φ1,φ2

> c, where c is specified so that the size of the test is α :

Pr
(
T

(l)
φ1,φ2

> c | Hl+1

)
= α; α ∈ (0, 1) , (16)

based on Theorem 1 c could be chosen as the (1− α)-th quantile of a χ2
dl−dl+1

distribution:

c = χ2
dl−dl+1

(1− α) . (17)

The choice of (17) in (16) only guarantees an asymptotic size-α test. In the case of the

Pearson and loglikelihood ratio statistics, some corrections to (17) have been proposed,

and these have been discussed by Read and Cressie (1988), Ch. 5, in the context of power-

divergence statistics for testing goodness-of-fit. In Cressie, N., Pardo, L. and Pardo, M.C.

(2003), (17) was used to answer, in a finite-sample simulation study, what choices of

λ in the family T
(l)
φ(λ),φ(0)

is the relation (16) most accurately attained? It was concluded

with the interesting result that, for loglinear models, the test statistic based on the power-

divergence measure for λ = 2/3 (Cressie-Read statistic), offers an attractive alternative to

the classical Pearson-based (λ = 1) and likelihood-ratio-based (λ = 0) test statistics. The

same value of λ = 2/3, was found by Cressie and Read (1984) to be at times preferable

to λ = 0, 1 in problems of goodness-of-fit.

To test the nested sequence of hypotheses {Hl : l = 1, ...,m} effectively, we need an

asymptotic independence result for the sequence of test statistics T
(1)
φ1,φ2

, T
(2)
φ1,φ2

, ..., T
(m∗)
φ1,φ2

,

where m∗ is the integer 1 ≤ m∗ ≤ m for which Hm∗ is true but Hm∗+1 is not true . This

result is given in the theorem below.
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Theorem 2 Suppose that data (N1, ..., NM) are multinomially distributed according to

(2) and (3). Suppose we wish to test first,

HNull : Hl against HAlt : Hl−1,

followed by

HNull : Hl+1 against HAlt : Hl.

Then, under the hypothesis Hl, the statistics T
(l−1)
φ1,φ2

and T
(l)
φ1,φ2

are asymptotically indepen-

dent and chi-squared distributed on dl−1−dl and dl−dl+1 degrees of freedom, respectively.

The proof of this result can be seen in In Cressie, N., Pardo, L. and Pardo, M.C.

(2003).

In general, theoretical results for the test statistic T
(l)
φ1,φ2

under alternative hypotheses

are not easy to obtain. An exception to this is when there is a contiguous sequence of

alternatives that approach the null hypothesis Hl+1 at the rate of O
(
n−1/2

)
. Regarding

the alternative, Haberman (1974) was the first to study the asymptotic distribution of the

Pearson statistic and log-likelihood ratio statistic under contiguous alternative hypothe-

ses, establishing that the asymptotic distribution is non-centrally chi-squared distributed

with dl − dl+1 degrees of freedom. Oler (1985) presented a systematic study of the con-

tiguous alternative hypotheses in multinomial populations, obtaining as a special case the

asymptotic distribution for the log-linear models. Through simulations, she also stud-

ied how closely the noncentral chi-squared distributions agree with the exact sampling

distributions. Fenech and Westfall (1988) presented an interesting analytic study of the

noncentrality parameter in the case of loglinear models. Now we generalize their results

to tests based on the φ−divergence statistic T
(l)
φ1,φ2

given by (15).

Consider the multinomial probability vector

pn (θ) ≡ p (θ) + d/
√
n; θ ∈ Θl+1, n ≥ n0 > 0, (18)

where d ≡ (d1, ..., dM)T is a fixed M × 1 vector such that
∑M

j=1 dj = 0, and recall that n

is the total-count parameter of the multinomial distribution. As n→∞, the sequence of

multinomial probabilities {pn (θ)}n∈N converge to a multinomial probability in Hl+1 at

the rate of O
(
n−1/2

)
. We call

Hl+1,n : p = pn (θ) = p (θ) + d/
√
n; θ ∈ Θl+1, n ≥ n0 > 0, (19)

a sequence of contiguous alternative hypotheses, here contiguous to the null hypothesis

Hl+1.

Now consider testing

HNull : Hl+1 against HAlt : Hl+1,n, (20)
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using the test statistic T
(l)
φ1,φ2

given by (15). The power of this test is,

π(l)
n ≡ Pr

(
T

(l)
φ1,φ2

> c |Hl+1,n

)
. (21)

In what to follow, we show that under the alternative Hl+1,n, and as n → ∞, T
(l)
φ1,φ2

converges in distribution to a non-central chi-squared random variable with non-centrality

parameter µ, where µ is given in Theorem 3, and dl− dl+1 degrees of freedom (χ2
dl−dl+1,µ

).

Consequently, as n→∞,

π(l)
n → Pr

(
χ2
dl−dl+1,µ

> c
)
. (22)

Theorem 3 Suppose that data (N1, ..., Nk) are multinomially distributed according to (2)

and (3). The asymptotic distribution of the statistic T
(l)
φ1,φ2

, under the contiguous alterna-

tive hypotheses (19), is a chi-squared distribution with dl − dl+1 degrees of freedom and

noncentrality parameter µ given by

µ = dTdiag
(
p (θ0)

−1/2
) (
A(l) − A(l+1)

)
diag

(
p (θ0)

−1/2
)

d,

where d = (d1, ..., dM)T is defined in (19) and satisfies
M∑
i=1

di = 0, and

A(i) = diag(p (θ0)
−1/2)Σp(θ0)W(i)

(
W T

(i)Σp(θ0)W(i)

)−1

W T
(i)Σp(θ0)diag

(
p (θ0)

−1/2
)

;

i = l, l + 1.

Remark 1 Theorem 3 can be used to obtain an approximation to the power function of

the test (14), as follows. Write

p
(
θ(l)
)

= p
(
θ(l+1)

)
+

1√
n

(√
n
(
p
(
θ(l)
)
− p

(
θ(l+1)

)))
,

and define

pn
(
θ(l)
)
≡ p

(
θ(l+1)

)
+

1√
n
d,

where d =
(√

n
(
p
(
θ(l)
)
− P

(
θ(l+1)

)))
. Then substitute p into the definition of µ, and

finally µ into the right hand side of (22), we have the approximation to the power function.

.

Remark 2 If we consider the statistic T
(l)
φ1,φ2

with φ2 (x) = ψ(0) (x) = x log x − x + 1

and φ1 (x) = ψ(1) (x) = 1
2
(1− x)2 , we obtain the classical Pearson statistic for testing

loglinear models (e.g., Christensen, 1997, p.338),

X2 ≡ n

k∑
j=1

(
pj

(
θ̂(l)
)
− pj

(
θ̂(l+1)

))2

pj

(
θ̂(l+1)

) ,
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where θ̂(i) is the MLE of θ in the model Hi. The asymptotic distribution of X2 under a

sequence of contiguous alternative hypotheses is given in Theorem 3.

If we consider the statistic T
(l)
φ1,φ2

with φ2 (x) = ψ(0) (x) = x log x− x+ 1 and φ1 (x) =

ψ(0) (x) = x log x− x+ 1, we get the classical likelihood ratio statistic for testing loglinear

models (e.g., Christensen, 1997, p.338),

G2 ≡ 2
k∑
j=1

pj

(
θ̂(l+1)

)
log

pj

(
θ̂(l+1)

)
pj

(
θ̂(l)
) .

Again, the asymptotic distribution of G2 under a sequence of contiguous alternative hy-

potheses is given in Theorem 2. This particular result was obtained for the first time in

Oler (1985).

4 Nonadditivity in loglinear models

Let

log p (θ) ∈ C (XA) , (23)

be any loglinear model with dim (XA) = M × tA and rank (XA) = tA. This loglinear

model can be written as

pA∗
(
θA
)
≡ exp

(
XAθ

A
)
/n,

where θA is a tA×1 vector contained in RtA . Although model (23) seems adequate for our

data it is possible to consider a more complete model. For instance Christensen and Utts

(1992) expanded this model as follows

pV ∗
(
θV
)
≡ exp

(
XV θ

V
)
/n, (24)

where XV =
(
XA, Z

(
N−1m

(
θA
)))

and θV =
((
θA
)T
, γT
)T

. The matrix function Z (.)

is assumed to be differentiable and rank ((XA, Z (.))) = tV > tA and the functional form

of its elements is known but it is a function of the unknown estimable functions of θA.

This model includes nonlinear terms from what it is not a loglinear model.

The problem of considering models in which nonlinear terms have been added was

considered for the first time by Tukey (1949). He solved the problem of testing if there is

interaction in the two-way classification model with one observation per cell. There have

been several extensions of this test to models with different functions for interactions and

to other designs. These are discussed by Harter and Lum (1962), Mandel (1959, 1961)

Tukey (1955, 1962). Latter Milliken and Graybill (1970) extended these ideas to the

general linear model and to the case where the interaction is any known function of the

block and treatment effects. Johnson and Graybill (1972) considered the situation where
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the interaction may not be a function of the treatment and block effects. The papers of

Snee (1982) and Petitt (1989) are also interesting in this area. The importance as well

as some interesting references in relation with the problem of testing nonadditivity, in

general, can be seen in these papers and, for loglinear models in particular, in Christensen

and Utts (1992).

To obtain the maximum likelihood estimator for the parameters of the lognonlinear

model (24) require specialized methods for fitting it. But it is possible to overcome this

problem using the two-stage fitting procedure. In this procedure the parameters are first

estimated using a loglinear model, and then the estimates are treated as known constants

for the second stage of the test. Therefore, the objective of this Section is to test

HNull : γ = 0 versus HAlt : γ 6= 0. (25)

where γ is an unknown vector.

For testing (24), Christensen and Utts (1992) proposed the likelihood ratio test. In

Pardo, L. and Pardo, M.C. (2003) some new families of test statistics for testing (25) were

presented. These three new families are natural extensions of the likelihood ratio test and

they are based on the φ−divergence measures.

Following Christensen and Utts (1992), rather than fitting (24) directly, the two-stage

estimation procedure consists of finding p
(
θ̂A
)

from model (23) and then fitting

pV ∗
(
θV
)
≡ exp

(
XAθ

A + Z
(
N−1m

(
θ̂A
))

γ
)
/N,

with Z
(
N−1m

(
θ̂A
))

treated as a known fixed matrix. In the second stage, we want to

test

HNull : log p (θ) ∈ C (XA) versus HAlt : log p (θ) ∈ C
(
X̂V

)
, (26)

where X̂V =
(
XA, Z

(
mA∗

(
θ̂A
)))

. It is clear that C (XA) ⊂ C
(
X̂V

)
.

For linear models, the validity of tests based on this two-stage fitting procedure was

established by Milliken and Graybill (1970) and in loglinear models by Christensen and

Utts (1992). These authors proposed the likelihood ratio test for testing (26), which is

given by

G2 = −2 log
k∏
j=1

mA
j

(
θ̂A
)

mV
j

(
θ̂V
)
nNj

. (27)

This statistic can be written as

G2 = 2n
k∑
j=1

pV∗j

(
θ̂V
)

log

pV∗j

(
θ̂V
)

pA∗
j

(
θ̂A
)
 (28)
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which is the usual form. We can observe that the expression of G2 in (28) can be written

as

G2 = 2NDKull

(
pV∗
(
θ̂V
)
,pA∗

(
θ̂A
))

. (29)

As a generalization of (29) in Pardo, L. and Pardo, M. C. (2003) it was considered the

following family of statistics for testing (26),

Tφ ≡
2N

φ′′ (1)
Dφ

(
pA∗

(
θ̂A
)
,pV ∗

(
θ̂V
))

. (30)

We can also write (27) as

G2 = 2
k∑
j=1

nNj log

mV
j

(
θ̂V
)

mA
j

(
θ̂A
)
 (31)

so

G2 = 2N
(
DKull

(
p̂,pA∗

(
θ̂A
))
−DKull

(
p̂,pV∗

(
θ̂V
)))

. (32)

Then as a generalization of (32) we can also consider the family of statistics

Sφ ≡
2N

φ′′ (1)

(
Dφ

(
p̂,pA∗

(
θ̂A
))
−Dφ

(
p̂,pV∗

(
θ̂V
)))

. (33)

In the following Theorem we consider the asymptotic distribution of the familes of

statistics Tφ and Sφ.

Theorem 4 Suppose that data (N1, ..., Nk) are multinomially distributed according to (2)

and (3). For testing hypotheses HA versus HV given by (26), with C (XA) ⊂ C
(
X̂V

)
,

C (X0) ⊂ C (XA) , the asymptotic null distribution of the test statistics Tφ and Sφ under

the null hypothesis given in (26) is chi-squared with tV − tA degrees of freedom.

In the cited paper of Pardo, L. and Pardo, M. C. (2003) it can be seen an interesting

simulation study to get the best value of λ in the power divergence family. The results

presented in this review assume a multinomial random sampling. In Cressie, N. and Pardo,

L. (2002) the results given in Theorems 2 and 3 were extended under the assumption of

either Poisson, multinomial or product multinomial sampling. In Pardo, L. and Pardo,

M. C. (2003) the Theorem 4 was presented under the same types of random sampling.
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