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Abstract

Nous présentons dans cet article une version multivoque d’un théorème du à

Talagrand sur la convergence des martingales à la limite, notion beaucoup plus

générale que celle de martingale.
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1 Preliminaries

The notion of ”martingale in the limite” was first introduced by A.G.Mucci ([9]). The

principal convergence theorem is due to Talagrand ([10])

Multivalued version of the Talagrand convergence theorem for the martingale in the

limit was proved, with respect to the Mosco convergence, by Castaing et Ezzaki ([3],

theorem 3.3. in [3]).

The aim of this paper is to extend this theorem to the linear convergence. This result

is also a generalization of a theorem due to Choukairi ([4]) for the multivalued pramarts.

The notion of martingale in the limit is a generalization of the notion of pramarts.

E-valued martingales in the limit

Let (Ω, Σ, P ) be a probability space, E a Banach space and E∗ its topological dual,

(Σn)n≥1 an increasing sequence of sub-σ-fields of Σ such that Σ is the σ-field generated

by ∪n≥1Σn.

Let Xn : Ω → E be a random variable for each n ∈ N. (Xn, Σn)n∈N is said to be an

E-valued martingale in the limit if there is a sequence (hn)n of measurable and positive

functions such that :

i) lim
n
‖hn‖ = 0

ii) ∀m ≥ n,
∥∥EΣn (Xn)−Xn

∥∥ ≤ hn almost everywhere

393



where EΣn (Xn) is the conditional expectation of Xn with respect to the σ-field Σn.

An other notion was introduced by Talagrand, lightly different of the ”martingale in

the limit” : the notion of MIL, which is a generalization of the ”martingale in the limit”

(Xn, Σn)n is said to be a MIL if and only if, for each ε > 0, there is p such that, for

each n ≥ p :

P

(
sup

q

{∥∥Xq − EΣq (Xn)
∥∥ ; p ≤ q ≤ n

}
> ε

)
≤ ε.

Convergence results :

1) A real-valued MIL such that lim inf E (|Xn|) < +∞ converges almost every where.

2) If (Xn, Σn)n is a E−valued MIL such that :

(i) lim inf
∫
‖Xn‖ dP < +∞

(ii) x∗ ◦Xn → 0 for each x∗ ∈ E∗

then ‖Xn‖ → 0 a.e.

Multivalued case.

Let (Ω, Σ, P ) be a probability space, E a Banach space such that its topological dual

E∗ is strongly separable, (Σn)n≥1 an increasing sequence of sub-σ-fields of Σ such that Σ

is the σ-field generated by ∪n≥1Σn.

The set of nonempty convex and weakly compact subsets of E will be denoted by

cw(E).

B and B∗ are, respectively, the closed unit balls of E and E∗.

For each open subset U of E, we shall set

U− := {C ∈ cw(E) : C ∩ U 6= ∅}
and we shall denote by E the Effrös σ-algebra of cw(E) that is the smallest σ−algebra

over cw(E) containing the class

{U−, U open in E} .

The two best-known functionals associated with an element C in cw(E) are its distance

functional and its support functional, defined by the familiar formulas:

d(x, C) = inf {‖x− y‖ , y ∈ C} (x ∈ E)

δ∗(x∗, C) = sup {〈x∗, y〉 , y ∈ C} (x∗ ∈ E∗) .

For any C ∈ cw(E), we set

|C| = sup {‖x‖ : x ∈ C} .

A random set will be a multifunction X : Ω −→ cw(E) which is measurable with

respect to the σ-fields Σ and E .

We denote by L1
cw(E)(Σ) the space of all the random sets taking values in cw(E) such

that ω → |X(ω)| is integrable.

Let H be the Hausdorff metric and τH be the topology associated to H.
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The linear topology τL on cf(E) is the topology generated by all sets of the form U−,

where U is an open subset of E, and all sets

H(x∗, α) := {C ∈ ckw(E) : δ∗(x∗, C) < α}

where x∗ ∈ E∗ is nonzero and α ∈ R.

τL was first considered by Hess ([5])and studied by Beer([2]).

We have the following result.

Proposition 1.1. Let (Cn)n∈N∪{∞} be a sequence in cf (E ). Then: C∞ = τL − limn Cn

⇐⇒

{
(i) d(x, C∞) = limn d(x, Cn),∀x ∈ E

and (ii)δ∗(x∗, C∞) = limn δ∗(x∗, Cn),∀x∗ ∈ E∗.

Reference [2],Theorem 3.4.

For any random set X, we put

S1 (X, Σ) = {f ∈ L1 (Σ) : f ∈ X almost surely} .

In this definition, Σ may be replaced by any sub-σ−field of Σ.

S1 (X, Σ) is closed if X is closed valued and it is non-empty if and only if the function

d (0, X) ∈ L1
R (Ω, Σ, P ) .

The multivalued integral of X is defined, for each A ∈ Σ, by∫
A

X (ω) P (dω) = cl
[{∫

A
f(ω)P (dω) : f ∈ S1 (X, Σ)

}]
.

For the basic properties of the multivalued integral, we refer the reader to [1].

Let X be an element of L1
cw(E)(Σ), the multivalued conditional expectation of X with

respect to Σn, denoted by EΣn (X), is an element of L1
cw(E)(Σ) such that

S1
(
EΣn (X) , Σ

)
=

{
EΣn (f) : f ∈ S1 (X, Σ)

}
.

2 Convergence theorem for multivalued martingales

in the limit.

Definition 2.1. Let Xn : Ω → cw(E) be a random set for each n ∈ N. (Xn, Σn)n∈N is

said to be a MIL taking values in L1
cw(E) (Σ) if the following conditions hold :

(a) ∀n ∈ N, Xn is Σn−measurable,

(b) ∀ε > 0,∃ p ∈ N∗ :

n ≥ p ⇒ P

[
sup

p≤q≤n
h

(
Xq, E

Σq (Xn)
)

> ε

]
< ε.

The following theorem is an extension of the convergence theorem due to Talagrand ([10]):
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Theorem 2.1. Let (Xn, Σn)n∈N be a MIL taking values in L1
cw(E) (Σ) such that:

(i) supn∈N

∫
Ω
|Xn (ω)|P (dω) < +∞

(ii) there is a random set K : Ω → cw(E) such that Xn(ω) ⊂ K(ω), for each n and

for each ω.

Then, there is X∞ ∈ L1
cw(E) (Σ) such that X∞ = τL − limn Xn almost surely.

Proof

Let us first recall tree formulas deduced from the Hormander’s formula and the prop-

erties of the Hausdorff distance.

For each C and for each D in cw(E), we set :

H(C, D) = sup
x∗∈B∗

|δ∗(x∗, C)− δ∗(x∗, D)| (1)

or

H(C, D) = sup
x∈E

|d(x, C)− d(x, D)| (2)

and, also, for each x ∈ E,

d(x, C) = sup
x∗∈B∗

[< x∗, x > −δ∗(x∗, C)] (3).

We deduce from (1) and definition 2.1 that, if (Xn, Σn)n∈N is a bounded MIL taking

values in L1
cw(E) (Σ) , then for each x∗ ∈ B∗, (δ∗(x∗, Xn), Σn)n∈N is a real-valued bounded

MIL. Using Talagrand theorem (theorem 4 in [10]), it follows that (δ∗(x∗, Xn), Σn)n∈N

converges almost surely for each x∗ ∈ B∗.

Then, we give an useful lemma proved by Christian Hess (see [6], Lemme 5.2).

Lemma 3.1. Let D∗ be a countable subset of E∗ which is dense with respect to the

Mackey topology and let (Xn)n∈N be a sequence in L1
cw(E) (Σ) such that :

(i) supn∈N

∫
Ω
|Xn (ω)|P (dω) < +∞

(ii) there is a random set K : Ω → cw(E) and a set N0 such that P (N0) = 0 and

Xn (ω)⊂ K (ω) for each (ω, n) ∈ (Ω \N0)×N,

(iii) for each x∗ ∈ D∗, δ∗ (x∗, Xn) converges almost surely .

Then, there is a random set X∞ ∈ L1
cw(E) (Σ) such that, for each x∗ ∈ E∗, δ∗ (x∗, Xn)

converges almost surely to δ∗ (x∗, X∞) .

We recall that E∗ is dense with respect to the Mackey topology if and only if E is

separable.

Then, by the lemma below, there is a random set X∞ ∈ L1
cw(E) (Σ) such that, for each

x∗ ∈ E∗, δ∗ (x∗, Xn) converges almost surely to δ∗ (x∗, X∞) .
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We deduce now from (2) that, for each x ∈ E, (d(x, Xn), Σn)n∈N is a real-valued

bounded MIL. Using Talagrand theorem, (d(x, Xn), Σn)n∈N converges almost surely to a

function fx, for each x ∈ E.

Then, there is a subset N ′ of Ω such that P (N ′) = 0 and limn d(x, Xn(ω)) = fx (ω)

for each ω /∈ N ′.

We proceed now to show that fx = d(x, X∞).

Let D0 =
{
z∗j : j ∈ N

}
be a countable subset of B∗ such that D0 is dense with respect

to the Mackey topology.

It follows from (3) that

d(x, Xn) = sup
j

[
< z∗j , x > −δ∗(z∗j , Xn)

]
.

Then, for each j ∈ N , the sequence
(
< z∗j , x > −δ∗(z∗j , Xn)

)
n

converges almost surely

to < z∗j , x > −δ∗(z∗j , X∞).

Using (3), we have, for each j ∈ N :

< z∗j , x > −δ∗(z∗j , Xn) ≤ d(x, Xn)

and a passage to the limite implies that :

d(x, X∞) ≤ fx almost surely

for each x ∈ E.

Using the classical notations of the Mosco convergence, we set, for each ω ∈ Ω,

s− liXn (ω) = {x ∈ E : there is a sequence xn

which converges in norm to x with xn ∈ Xn (ω) for each n} .

Applying theorem 3.3. in [3], we have X∞ = s− liXn almost surely.

By an inequality proved by Tsukada (theorem 2.2. in [11]), we have

lim sup
n

d(x, Xn) ≤ d(x, s− liXn), for each x ∈ E. (4)

Then :

fx ≤ d(x, X∞) almost surely

and we conclude that X∞ = τL − limn Xn.
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