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Abstract

In several occasions the dynamic behaviour of a specific economic variable is

influenced by the optimal behaviour of agents that participate in the Economy.

This economic variable denominated state variable is observed by each agent in

a different way and it offers different answers for each one of them in the optimal

process relative to decision making. These answers represent the control parameters

for state variables and they determine the future behaviour.

The answer of each agent depends on the perception they have about the state

variables since their expectative about other agents interact in the system behaviour.

We offer a model with a only state variable and only control parameter and two

agents with symmetrical behaviour and it is enough to analyse one of them and

generalise the results for the other.

One of the most common examples that it is possible to analyse under this view

is the two oligopolistics behaviour case. State variable will be joint volume offered

by them and control variable will be the volume produced for each one of them.

Keywords: Optimal Control, Lagrange dynamical multipliers, dynamic program-

ming.

AMS Classification: 90C39, 37N35.

1 Introduction

We suppose a state equation in which xt+1 expresses the state of some situation at moment

t + 1: we will refer to xt+1 as a state variable. There are two agents, 1 and 2 that observe

this state variable, of distorted form, by means of z1,t y de z2,t respectively:{
z1,t = h1xt + v1,t v1,t ∼ N(0, σ2

v1
)

z2,t = h2xt + v2,t v2,t ∼ N(0, σ2
v2

),
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where v1,t y v2,t are aleatory perturbations. The agents choose a strategy that they will

follow accord with this reality: ui,t (control variable) that represents the strategy of the

i-th agent at time t. Suppose that the state equation is

xt+1 = φxt + γ1u1,t + γ2u2,t + wt,

where wt is a stochastic component (or noise) such that wt ∼ N(0, σ2
w) and φ, γ1, γ2 are

constants. We also assume that each one of the agents has an objective function to be

optimised
T∑

t=0

Fi,t
1

(1 + β)t
,

being β a discount factor and Fi,t a function that depends on the perception of the reality

that the i-th agent has at time t, zi,t, on his strategy, ui,t, and on his expectation with

respect to the strategy that the other agent (the j-th) chooses and that we will represent

by Ei(uj,t), i, j = 1, 2, i 6= j. That is,

F1,t = F1,t(z1,t, u1,t, E1(u2,t))

F2,t = F2,t(z2,t, u2,t, E2(u1,t)).

Our problem consist of defining conditions on the functions Fi,t such that these conditions

ensure the resolution of a maximisation problem over the objective function in such a

way that the solutions of this maximisation problem are a sequence of control variables

{ui,t}, being i = 1, 2.

First, we wonder if we could express the objective function depending only the state

variables (being zi the distorted state variable) and the control variables respectively. We

are supposing that there exists a reality Q = (zi,t, ui,t, Ei(uj,t)) in which

1. Fi,t(zi,t, ui,t, Ei(uj,t)) = 0,

2. the partial derivatives
∂Fi,t

∂zi,t

(Q),
∂Fi,t

∂ui,t

(Q) both exist and are continuous, and

3.
∂Fi,t

∂Ei(uj,t)
(Q) 6= 0.

Hence, by the Implicit Function Theorem, there exists a continuous and differentiable

function fi,t -in some neighbourhood- such that

Ei(uj,t) = fi,t(zi,t, ui,t).

That means that the i-th agent has the same strategy as the j-th at each moment t.

In order to simplify the initial problem, we are interested in expressing a variable as a

function of the other two. For this, we are assuming that

E1(u2,t) = f1,t(z1,t, u1,t) (1)

E2(u1,t) = f2,t(z2,t, u2,t) (2)
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Note that this problem in which there are two agents trying to optimise their objective

functions could be simplified as a unique problem, since there exists a total symmetry in

the study of the one and the other case. So that, in the future, we will only analyse the

problem from the point of view of the first agent. Thus, our initial problem viewed by

the first agent is

Maximise

{u1,0 . . . u1,T−1}

T∑
t=0

F1,t(z1,t, u1,t, E1(u2,t))
1

(1 + β)t
β > 0

subject to xt+1 = φxt + γ1u1,t + γ2u2,t + w1,t, with w1,t ∼ N(0, σ2
w1

)

We know that the perception of the reality that the first agent has is

z1,t = h1xt + v1,t,

so that implies that the equation (1) can be rewritten as

F1,t = F1,t(h1xt + v1,t, u1,t, f1,t(z1,t, u1,t))

= F1,t(h1xt + v1,t, u1,t, f1,t(h1xt + v1,t, u1,t))

= G1,t(xt, u1,t)

that is, we have expressed F1,t by mean of the function G1,t, which only depends on the

state variable xt and the control variable u1,t. Hence, the new optimisation program is

(P )


Maximise

{u1,0 . . . u1,T−1}

T∑
t=0

G1,t(xt, u1,t)
1

(1 + β)t
, β > 0

subject to xt+1 = φxt + γ1u1,t + γ2u2,t + w1,t, with w1,t ∼ N(0, σ2
w1

)

So, the main result of this section is the following:

Theorem Let G1,t be a concave function and assume that there exists other function f1,t,

derivable with continuity, in such a way that E1(u2,t) = f1,t(z1,t, u1,t). Then the problem

(P ) has a solution.

The concavity condition that is supposed to function G1,t is equivalent to the verification

of the following conditions at moment t:

1. Both Gi,t ∈ C2, to i = 1, 2.

2.
∂2Gi,t

(∂xt)
2 < 0.

3.
∂2Gi,t

(∂xt)
2

∂2Gi,t

(∂ui,t)
2 >

(
∂2Gi,t

∂xt∂ui,t

)2

that is,
∂2Gi,t

(∂ui,t)
2 <

(
∂2Gi,t

∂xt∂ui,t

)2

∂2Gi,t

(∂xt)
2

< 0.
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In the previous maximisation problem we are focused on determining conditions on

the objective function that implies the existence of solution for the problem. As this is a

optimisation program of a two variable-function subject to equality restrictions, this can

be solved by means of the Lagrange dynamical multipliers method. For this, firstly, we

define the Lagrangian function

L(xt, u1,t, λ(t)) =
T∑

t=0

[G1,t(xt, u1,t)
1

(1 + β)t ]

+
λ(t)

(1 + β)t+1 (xt+1 − φxt − γ1u1,t − γ2u2,t − w1,t) , t = 0, . . . , T.

Second, we calculate the points which cancel simultaneously all partial derivatives of the

Lagrangian function, where this function is considered as a function of the variables xt, u1,t

and λ(t). These conditioned critical points are p∗ = (x∗t , u
∗
1,t) such that

(
x∗t , u

∗
1,t, λ(t)

)
is a

solution of the equations system, obtained by conditions of the first order, at each moment

t = 0, 1, . . . , T . We note that from the first two equations it could be obtained a common

value for λ(t). We are assuming that constants φ, γ1, γ2 are nonzero, and so

∂G1,t

∂xt

=
1

(1 + β)
λ(t)φ

∂G1,t

∂u1,t

=
1

(1 + β)
λ(t)γ1

xt+1 − φxt − γ1u1,t − γ2u2,t − w1,t = 0

Hence,

∂G1,t

∂u1,t

=
γ1

φ

∂G1,t

∂xt

that is, γ1 = φ

∂G1,t

∂u1,t

∂G1,t

∂xt

. (3)

With the same argument, for the second agent, we have the following expression:

γ2 = φ

∂G2,t

∂u2,t

∂G2,t

∂xt

. (4)

As one of the second-order conditions for calculating conditionated extremal points, we

analyse the sign of quadratic form associated to the hessian matrix, restricted to certain

subspace. For this, we determine the second-order partial derivatives of the Lagrangian

function in order to form the hessian matrix. Thus, for each conditionated critical point

p∗, the matrix is Hp∗ . As the Schwarz Theorem guarantees, under certain conditions, the

equality of crossed partial derivatives, the hessian matrix Hp∗ is symmetrical and so, it

represents a quadratic form, the following one:

Q(y1, y2) =
1

(1 + β)t

(
∂2G1,t(p

∗)

(∂xt)
2 y2

1 +
∂2G1,t(p

∗)

(∂u1,t)
2 y2

2 + 2
∂2G1,t(p

∗)

∂xt∂u1,t

y1y2

)

270



This quadratic form must be restricted to these points (x, u) that verify the following

condition, where x represents the state variable and u the control variable:

x
∂g

∂xt

(p∗) + u
∂g

∂u1,t

(p∗) = 0

being (p∗) a critical conditionated point. With a simple calculation, we obtain the follow-

ing expressions
∂g

∂xt

(p∗) = −φ

∂g

∂u1,t

(p∗) = −γ1

that allows us to reduce the initial optimisation program to the determination of the sign

of quadratic form represented by matrix Hp∗ restricted to subspace given by

u = − φ

γ1

x, (5)

Then, the quadratic form with restriction (5)

u1,t = − φ

γ1

xt. (6)

is

Q

(
x,− φ

γ1

x

)
= Qt (x) =

1

(1 + β)t

(
∂2G1,t

(∂xt)
2 x2 − 2

∂2G1,t

∂xt∂u1,t

φ

γ1

x2 +
∂2G1,t

(∂u1,t)
2

(
− φ

γ1

x

)2
)

,

that can be expressed as the following matrix product:

Qt (x) =
1

(1 + β)t x
2

(
1 − φ

γ1

)


∂2G1,t

(∂xt)
2

∂2G1,t

∂xt∂u1,t

∂2G1,t

∂xt∂u1,t

∂2G1,t

(∂u1,t)
2




1

− φ

γ1



=
1

(1 + β)t x
2Q∗

1,t

(
1,− φ

γ1

)
.

For Qt (x) < 0, it is neccesary and sufficient that Q∗
1,t

(
1,− φ

γ1

)
, is negative:

Q∗
1,t

(
1,− φ

γ1

)
=

(
1 − φ

γ1

)


∂2G1,t

(∂xt)
2

∂2G1,t

∂xt∂u1,t

∂2G1,t

∂xt∂u1,t

∂2G1,t

(∂u1,t)
2




1

− φ

γ1

 < 0.

Note that this matrix product is a quadratic form evaluated at points

(
1,− φ

γ1

)
and

thus, it negative definite, so the initial problem has solution under the conditions given

before:
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1.
∂2Gi,t

(∂xt)
2 < 0.

2.
∂2Gi,t

(∂xt)
2

∂2Gi,t

(∂ui,t)
2 >

(
∂2Gi,t

∂xt∂ui,t

)2

it implies,
∂2Gi,t

(∂ui,t)
2 <

(
∂2Gi,t

∂xt∂ui,t

)2

∂2Gi,t

(∂xt)
2

< 0.

Hence, the optimal strategy at moment t for each agent is

(x∗t , u
∗
i,t) = (x∗t ,

−φ

γi

x∗t ), being i = 1, 2.

2 Conclusions

In order to obtain conclusions, we summarise now the contents of previous sections:

1. First, the state equation

xt+1 = φxt + γ1u1,t + γ2u2,t + wt,

is a first-order difference equation which solution is obtained in a recursive form and

can be expressed as

xt+1 = φt+1x0 +
t∑

i=0

φt−i[γ1u1,i + γ2u2,i + wi]. (7)

2. In second place, at each moment t we obtained the following conditions:

γ1 = φ

∂G1,t

∂u1,t

∂G1,t

∂xt

and, γ2 = φ

∂G2,t

∂u2,t

∂G2,t

∂xt

. (8)

Since ui,t = − φ

γi

xt, then the optimal value for the control variables of both agents

are

u∗1,t = − φ

γ1

xt = −

∂G1,t

∂xt

∂G1,t

∂u1,t

xt, u∗2,t = − φ

γ2

xt = −

∂G2,t

∂xt

∂G2,t

∂u2,t

xt. (9)

and so,

u∗1,t =
γ2

γ1

u∗2,t

which can be reexpressed, by (8), as

u∗1,t =

∂G2,t

∂u2,t

∂G1,t

∂u1,t

u∗2,t. (10)
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The expression (9) collects the reaction functions of both agents. Theses reaction

functions, evaluated at the optimal points, are connected by the relationship (10).

3. Finally, the following expression is obtained by inserting the previous optimal values

in the state equation:

x∗t+1 = φx∗t − φ

∂G1,t

∂xt

∂G1,t

∂u1,t

x∗t − φ

∂G2,t

∂xt

∂G2,t

∂u2,t

x∗t + wt = φx∗t

1−


∂G1,t

∂xt

∂G1,t

∂u1,t

+

∂G2,t

∂xt

∂G2,t

∂u2,t


+ wt.

From the economical point of view, we suppose that values of state variables are not

changing notably, and that φ > 0. From this expression, it is clear that the optimal

solution of the game depends on the action of each agent. By (7) y (9), the above

expression can be rewritten as

x∗t+1 = φt+1x∗0 +
t∑

i=0

φt−i[−2φx∗i + wi]. (11)

Note that, in order to analyse the behaviour of this best solution, we consider it as

solution of a first-order difference equation with constant coefficients, that is, as a

sequence which convergence is particularly interesting in the following case:

0 < φ

∣∣∣∣∣∣∣∣1−


∂G1,t

∂xt

∂G1,t

∂u1,t

+

∂G2,t

∂xt

∂G2,t

∂u2,t


∣∣∣∣∣∣∣∣ < 1

3 Particular Cases.

3.1 Exponential objective function.

We assume the function G1,t(xt, u1,t) = −ex2
t +u2

1,t , by this, now our problem is:

(P )


Maximise

{u1,0 . . . u1,T−1}

T∑
t=0

(
−ex2

t +u2
1,t

) 1

(1 + β)t

subject to xt+1 = φxt + γ1u1,t + γ2u2,t + w1,t, with w1,t ∼ N(0, σ2
w1

)

being β a discount factor. In this case, the Lagrange dynamical multiplier obtained is:

λ(t) = −1 + β

φ
2xte

x2
t +u2

1,t = −1 + β

γ1

2u1,te
x2

t +u2
1,t .

Which we deduce that u1,t =
γ1

φ
xt, this is, control variable that is proportional to the

state variable, for each moment t.
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The Hessian matrix that evaluated in points p∗ = (xt,
γ1

φ
xt), is the matrix

Hp∗ =

(
1

1 + β

)t


−2e

x2
t (1+(

γ1

φ
)2)

(1 + 2(
γ1

φ
)2) −4

γ1

φ
x2

t e
x2

t (1+(
γ1

φ
)2)

−4
γ1

φ
x2

t u1,te
x2

t (1+(
γ1

φ
)2)

−2e
x2

t (1+(
γ1

φ
)2)

(1 + 2(
γ1

φ
)2)

 ,

associated to a quadratic form that is negative definite, and we will restrict to points

(x, u) that verify this equation

x
∂g(p∗)

∂xt

+ u
∂g(p∗)

∂u1,t

= 0 this is, − φx− γ1u = 0.

3.2 Quadratic objective function.

In this example, we consider the concave function G1,t(xt, u1,t), a quadratic form negative

definite, which is,

G1,t = a1,1x
2
t + a2,2u

2
1,t + 2a1,2xtu1,t

being, a1,1 < 0, a2,2 < 0 y a1,1a2,2 > a2
1,2. Here the optimisation problem is:

Maximise

{u1,0 . . . u1,T−1}

T∑
t=0

1

(1 + β)t

(
a1,1x

2
t + a2,2u

2
1,t + 2a1,2xtu1,t

)
being β > 0

subject to xt+1 = φxt + γ1u1,t + γ2u2,t + w1,t, with w1,t ∼ N(0, σ2
w1

).

By conditions of the first order applied to the Lagrangian function, we obtain that λ(t)

(Lagrange dynamical multiplier) is:

λ(t) =
1 + β

φ
(2a1,1xt + 2a1,2u1,t) = −1 + β

γ1

(2a2,2u1,t + 2a1,2xt) ,

simplifying, the following expression,

u1,t =
a1,1γ1 − a1,2φ

a2,2φ− a1,2γ1

xt,

from which we observe that the control variable is proportional to the state variable.
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