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Abstract

In this work we construct a numerical method to solve a two dimensional convection-

diffusion parabolic problem for which the diffusion term can be very small. To

deduce the method we use the Peaceman-Rachford scheme to discretize in time and

a finite difference scheme of HODIE type, defined on a piecewise uniform Shihskin

mesh, for the spatial discretization. The numerical results show that the method is

uniformly convergent with respect to the diffusion parameter, having order two in

both time and spatial variables. Therefore, the method is more efficient that the

schemes used so far to solve this type of problems.

Keywords: Peaceman-Rachford scheme, HODIE scheme, parabolic problem, uni-

form convergence.

AMS Classification: 65N12, 65N30, 65N06.

1 Introduction

We consider the linear parabolic 2D problem














ut + Lεu = f(x1, x2, t), (x1, x2, t) ∈ Ω × (0, T ],

u(x1, x2, 0) = u0(x1, x2), (x1, x2) ∈ Ω,

u(x1, x2, t) = 0, (x1, x2, t) ∈ ∂Ω × (0, T ],

(1)

where Ω = (0, 1)2 and the differential operator Lε is defined by

Lεu ≡ −ε∆u + a · ∇u + bu. (2)

We suppose that the diffusion parameter ε can be very small, 0 < ε ≤ 1 and that

a = (a1, a2), b, f and u0 are sufficiently smooth functions satisfying

ai(x1, x2) ≥ αi > 0, i = 1, 2, b(x1, x2) ≥ 0. (3)
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It is known, see [11] for example, that under sufficient compatibility conditions among

the data, the solution of (1) has a regular layer in the output boundary

Ωo = {(x1, x2) ∈ ∂Ω; a · n > 0},

where n is the normal exterior to ∂Ω, and a corner layer in the neighborhood of (1,1).

This behavior motivates that, to solve efficiently (for all values of ε) this problem, it

is necessary to use robust numerical methods (see [5] for a rigorous definition), i.e, the

error associated to the numerical method can be bounded independently of the diffusion

parameter ε. In recent years, many simple numerical methods with this property (finite

differences or finite elements) defined on piecewise uniform Shishkin meshes, see [5, 11],

have been developed to solve both stationary and time dependent singularly perturbed

problems. Nevertheless, we know of few methods having order bigger than one (see [6, 7]),

used to solve singularly perturbed parabolic problems. In this paper we want to show that

it is possible to find a method of order 2 combining an alternating direction technique to

discretize in time, namely the Peaceman-Rachford scheme, [10] and the HODIE technique

defining a finite difference scheme to discretize in space, [2]. This same idea was used in

[3, 4] to find some numerical uniformly convergent methods having order 1, for both

convection-diffusion and reaction-diffusion problems of type (1).

To simplify the construction of the method, we decompose the differential operator Lε

in the form Lε = L1,ε + L2,ε, where

Li,ε ≡ −ε
∂2

∂x2
i

+ ai
∂

∂xi
+ bi, i = 1, 2, (4)

and b = b1 + b2, bi ≥ b̃i ≥ 0. The operators Li,ε, i = 1, 2 are a family of 1D differential

operators depending on the variables x2 ∈ (0, 1) and x1 ∈ (0, 1) respectively. Also,

it is necessary to decompose the right-hand side of the continuous problem (1) in an

appropriate way. Following [3] we take f(x1, x2, t) = f1(x1, x2, t) + f2(x1, x2, t), where

f2(x1, x2, t) = f(x1, 0, t) + x2(f(x1, 1, t) − f(x1, 0, t)),

f1(x1, x2, t) = f(x1, x2, t) − f2(x1, x2, t).

Throughout the paper C will denote any positive constant independent of ε and the mesh

sizes.

Before constructing the numerical method, we recall some results showing the asymp-

totic behavior of the exact solution of (1). Firstly, from [8, 9] we know that under sufficient

regularity and compatibility conditions for a, b, f and u0, for λ a not integer real number

the solution u(x1, x2, t) ∈ C l+λ,l+λ,(l+λ)/2(Ω × [0, T ]), i.e., u is a l-Hölder function (the

derivatives up to order l are Hölder continuous functions). In second place, in [3, 12] it

was proved that the exact solution of (1) can be written as u = u0 + w, where u0 is the
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regular component of u and w is its singular component; moreover, w = u1 + u2 + u3

where u1 and u2 are the layer functions associated to the regular layers in x1 = 1 and

x2 = 1 respectively and u3 is the corner layer function. These functions satisfy
∣

∣

∣

∣

∂ks+ktu0(x1, x2, t)

∂xk1

1 ∂xk2

2 ∂tkt

∣

∣

∣

∣

≤ C,
∣

∣

∣

∣

∂ks+ktu1(x1, x2, t)

∂xk1

1 ∂xk2

2 ∂tkt

∣

∣

∣

∣

≤ Cε−k1 exp

(

−
α1(1 − x1)

ε

)

,
∣

∣

∣

∣

∂ks+ktu2(x1, x2, t)

∂xk1

1 ∂xk2

2 ∂tkt

∣

∣

∣

∣

≤ Cε−k2 exp

(

−
α2(1 − x2)

ε

)

,
∣

∣

∣

∣

∂ks+ktu3(x1, x2, t)

∂xk1

1 ∂xk2

2 ∂tkt

∣

∣

∣

∣

≤ Cε−ks min

{

exp

(

−
α1(1 − x1)

ε

)

, exp

(

−
α2(1 − x2)

ε

)}

,

(5)

with ks = k1 + k2, ks + 2kt ≤ l.

2 The numerical scheme

To obtain the totally discrete method, we begin by discretizing the time variable with the

Peaceman-Rachford scheme using a constant step size ∆t. This scheme is defined as






















































u0 = u0(x1, x2),














(I + (∆t/2)L1,ε)u
n+1/2 = (I − (∆t/2)L2,ε)u

n+

+(∆t/2)(f1(x1, x2, tn+1/2) + f2(x1, x2, tn)),

un+1/2(0, x2) = un+1/2(1, x2) = 0,

x2 ∈ (0, 1),















(I + (∆t/2)L2,ε)u
n+1 = (I − (∆t/2)L1,ε)u

n+1/2+

+(∆t/2)(f1(x1, x2, tn+1/2) + f2(x1, x2, tn+1)),

un+1(x1, 0) = un+1(x1, 1) = 0,

x1 ∈ (0, 1),

(6)

where un(x1, x2) is the approximation to u(x1, x2, t) in the time level tn = n∆t.

To discretize in space we first construct the Shishkin mesh in a standard way, taking

into account that there are regular layers in the output boundary. Then, the mesh is the

tensor product of Shishkin meshes used in the case of positive convection-diffusion 1D

singularly perturbed problems, i.e, ΩN
ε = IN

1,ε × IN
2,ε, where

IN
k,ε =

{

xk,i = iHk, i = 0, . . . , N/2, xk,i = xk,N/2 + (i − N/2)hk,

i = N/2 + 1, . . . , N, hk,i = xk,i − xk,i−1, i = 1, . . . , N} ,
(7)

with N ≥ 4 a positive even integer, Hk = 2(1 − σk)/N , hk = 2σk/N and the transition

parameters σk are defined by

σk = min {1/2, σk,0ε lnN}, (8)

with σk,0 = 4/αk (see [2] for a theoretical justification of this choice). We assume that

σk = σk,0ε lnN (the interesting case in practice) and therefore the spatial mesh is piecewise

uniform.
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Now, on the meshes IN
k,ε, k = 1, 2, we discretize the 1D problems of (6) using a HODIE

finite difference scheme (see [2] for details of the construction). The coefficients rk,•
j and

qk,•
j , defining theses schemes, are calculated by imposing that polynomials of degree less

than or equal to 2 are in the kernel of local error operator and that they satisfy the

normalization condition qk,1
j + qk,2

j = 1, 1 ≤ j ≤ N − 1, k = 1, 2. Finally, for the

analysis it will be required that the scheme be of positive type, i.e., the coefficients satisfy

rk,−
j < 0, rk,+

j < 0, rk,c
j > 0,

rk,−
j + rk,+

j + rk,c
j ≥ 0, hk,j+1r

k,+
j − hk,jr

k,−
j > c > 0.

Under these restrictions, in [1] it is proved that the coefficients are well defined and

therefore the scheme can be written as follows.

For n = 0, 1, . . . , T
∆T

,















































































































































































































U0
x1,i,x2,j

= u0(x1,i, x2,j), 0 ≤ i, j ≤ N,

L̄N
2,εU

0
x1,i,x2,j

= L2,εu0(x1,i, x2,j), 0 ≤ i, j ≤ N,















































LN
1,εU

n+1/2
x1,j ,x2,k ≡ r1,−

j U
n+1/2
x1,j−1,x2,k + r1,c

j U
n+1/2
x1,j ,x2,k + r1,+

j U
n+1/2
x1,j+1,x2,k =

= q1,1
j (Un

x1,j−1 ,x2,k
+ (∆t/2)(−L̄N

2,εU
n
x1,j−1,x2,k

+

+f1(x1,j−1, x2,k, tn+1/2) + f2(x1,j−1, x2,k, tn)))+

+q1,2
j (Un

x1,j ,x2,k
+ (∆t/2)(−L̄N

2,εU
n
x1,j ,x2,k

+

+f1(x1,j , x2,k, tn+1/2) + f2(x1,j , x2,k, tn))), j = 1, · · · , N − 1,

U
n+1/2
0,x2,k

= U
n+1/2
N,x2,k

= 0,

x2,k ∈ IN
2,ε,

L̄N
1,εU

n+1/2
x1,j ,x2,k = −L̄N

2,εU
n
x1,j ,x2,k

− 2
U

n+1/2
x1,j ,x2,k − Un

x1,j ,x2,k

∆t
+ f1(x1,j , x2,k, tn+1/2)+

+f2(x1,j , x2,k, tn),















































LN
2,εU

n+1
x1,k,x2,j

≡ r2,−
j Un+1

x1,k,x2,j−1
+ r2,c

j Un+1
x1,k,x2,j

+ r2,+
j Un+1

x1,k ,x2,j+1
=

= q2,1
j (U

n+1/2
x1,k ,x2,j−1

+ (∆t/2)(−L̄N
1,εU

n+1/2
x1,k,x2,j−1

+

+f1(x1,k, x2,j−1, tn+1/2) + f2(x1,k, x2,j−1, tn+1)))+

+q2,2
j (U

n+1/2
x1,k,x2,j + (∆t/2)(−L̄N

1,εU
n+1/2
x1,k,x2,j+

+f1(x1,k, x2,j , tn+1/2) + f2(x1,k, x2,j, tn+1))), j = 1, · · · , N − 1,

Un+1
x1,k,0 = Un+1

x1,k ,N = 0,

x1,k ∈ IN
1,ε,

L̄N
2,εU

n+1
x1,k,x2,j

= −L̄N
1,εU

n+1/2
x1,k ,x2,j − 2

Un+1
x1,k,x2,j

− U
n+1/2
x1,k,x2,j

∆t
+ f1(x1,k, x2,j , tn+1/2)+

+f2(x1,k, x2,j, tn+1),

(9)
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where

r1,−
j = ∆t/2(−2ε + q1,1

j (−(2h1,j + h1,j+1)a1(x1,j−1, x2)+

+h1,j(h1,j + h1,j+1)b1(x1,j−1, x2)) − q1,2
j h1,j+1a1(x1,j , x2))/(h1,j(h1,j + h1,j+1)) + qk,1

j ,

r1,+
j = ∆t/2(−2ε + h1,ja1(x1,j , x2) − q1,1

j h1,j((a1(x1,j−1, x2) + a1(x1,j , x2)))/

/(h1,j+1(h1,j + h1,j+1)),

r1,c
j = ∆t/2(−r̃1,−

j − r̃1,+
j + q1,1

j b1(x1,j−1, x2) + q1,2
j b1(x1,j , x2)) + qk,2

j ,

q1,2
j = 1 − q1,1

j .

with

q1,1
j =

{

a1(x1,j , x2)/(a1(x1,j−1, x2) + a1(x1,j , x2)), if H1||a1||∞ ≥ 2ε,

(h1,j − h1,j+1)/(3h1,j), if H1||a1||∞ < 2ε,

for 1 ≤ j ≤ N/2 and q1,1
j = 0 for N/2 < j < N and the coefficients r2,•

j , q2,•
j are defined

analogously.

Lemma 1 Let N ≥ N0, where N0 is the smallest integer such that

||ak||∞ <
αkN0

4 log N0
, ||bk||∞∆t ≤ 2, k = 1, 2.

Then, if N−1 ≤ (∆t/4) min
k=1,2

αk, the HODIE operators defined in (9) are of positive type,

satisfy the discrete maximum principle and they are ε-stables in the maximum norm.

Proof. The proof is straightforward from the definition of rk,•
j and qk,•

j , k = 1, 2.

Theorem 1 Let u be the solution of (1) and {Un} the numerical solution of (9). Then

under the same hypotheses of Lemma 1, if we take q, ∆t such that 0 < q < 1 y N−q ≤

c(∆t)2, there exists C such that

max
tn

‖Un
i,j − u(x1,i, x2,j , tn)‖∞ ≤ C(∆t + N−2+q log2 N), 0 ≤ i, j ≤ N. (10)

Proof. We only give the outlines of the proof (see [1] for a detailed proof of this result).

Firstly, we must study the stability and the consistency, uniformly in ε, of the Peaceman-

Rachford scheme, and therefore in a classical way the convergence of time semidiscretiza-

tion can be proved. After that, taking into account the bounds (5) for the derivatives of

the exact solution of (1), we study the accuracy of the spatial discretization. Using appro-

priate Taylor expansions we can obtain bounds of the local discretization error depending

on the diffusion parameter. Nevertheless, from these bounds and the uniform stability of

the HODIE scheme it is not possible to deduce the uniform convergence of the scheme.

Therefore, it seems necessary to use the barrier function technique. Applying in an ap-

propriate way the discrete maximum principle, the ε-uniform convergence of the HODIE

scheme can be obtained. Finally, it is possible to find a recurrence relation between the

errors corresponding to two consecutive time levels; from this and the hypotheses imposed

on the discretization parameters, the required result of convergence is deduced.
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Remark 1 From the previous theorem we only deduce the first order of ε-uniform con-

vergence in the time variable. Nevertheless, as we will see in the next section, that it is not

the real situation. We think that this reduction of order is due to the technique of analysis,

but up to now we do not dispose of a complete proof of this. Also, the strong restriction

N−q ≤ c(∆t)2, between the discretization parameters, is not necessary in practice; we only

need that N−1 ≤ (∆t/4) min
k=1,2

αk to preserve that the HODIE scheme be uniformly stable

in maximum norm and it satisfies a discrete maximum principle.

3 Numerical results

In this section we present the results obtained in the numerical approximation of two

different examples of type (1). The first one is

ut − ε∆u + ux1
+ ux2

= f, (x1, x2, t) ∈ (0, 1)2 × (0, 2], (11)

where f and u0 are chosen so that the exact solution is

u(x1, x2, t) = (1 − e−t)x1x2(e
−(1−x1)/ε − 1)(e−(1−x2)/ε − 1).

For every N, ε and ∆t the error at each mesh point in time level tn is given by

Eε,N,∆t(i, j, n) = |u(x1,i, x2,j , tn) − Un
i,j|,

and the maximum errors are Eε,N = max
i,j,n

Eε,N,∆t(i, j, n). We denote by EN = max
ε

Eε,N

the corresponding ε-uniform error. From these values, the numerical orders of convergence

can be approximated by

p =
log (Eε,N/Eε,2N)

log 2
, puni =

log (EN/E2N )

log 2
.

In table 3 we show the results obtained for this problem. As we can see, they clearly show

the second order (except by the logarithmic factor) ε-uniform convergence of the scheme.

The second example is














ut − ε∆u + (1 − x1x2/2)ux1
+ (1 + x1x2/2)ux2

=

= e−tt2x1x2(1 − x1)(1 − x2), (x1, x2, t) ∈ (0, 1)2 × (0, 2],

u(x1, x2, 0) = 0, (x1, x2) ∈ [0, 1]2, u(x1, x2, t) = 0, (x1, x2, t) ∈ ∂(0, 1)2 × (0, 2].

(12)

The exact solution is now unknown and we estimate the errors using the double mesh prin-

ciple as follows. Taking step size ∆t/2, we calculate a second solution V n
i,j on the Shishkin

mesh with 2N mesh points for each spatial direction. Then, we construct the interpolating

quadratic polynomial P (x1,i, x2,j) of {V n
i,j} in the finest mesh and we compare with the

corresponding values of Un
i,j in the coarse mesh, i.e., Eε,N,∆t(i, j, n) ' |P (x1,i, x2,j)− Un

i,j|.
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ε N=32 N=64 N=128 N=256

∆t=0.1 ∆t=0.05 ∆t=0.025 ∆t=0.0125

20 3.706E-5 9.204E-6 2.291E-6 5.727E-7

2.001 2.007 2.000

2−4 5.795E-3 1.887E-3 4.699E-4 1.175E-4

1.619 2.006 2.000

2−8 6.205E-3 2.337E-3 8.209E-4 2.829E-4

1.409 1.509 1.537

2−12 6.086E-3 2.298E-3 8.073E-4 2.687E-4

1.405 1.510 1.587

2−16 6.076E-3 2.295E-3 8.056E-4 2.679E-4

1.405 1.510 1.589

2−20 6.076E-3 2.295E-3 8.056E-4 2.678E-4

1.405 1.510 1.589

EN 6.205E-3 2.337E-3 8.209E-4 2.829E-4

puni 1.409 1.509 1.537

Table 1: Maximum errors and numerical orders for (11)

Table 3 shows the results for this case; from this table we observe again that the second

order is achieved. In this second example, we do not have the compatibility conditions

required to prove the theoretical results. Therefore, we conjecture that in practice these

compatibility conditions are too strong and that similar results can be obtained for more

general problems.
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