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Abstract

Integral equation methods are often used to deal with exterior problems of wave
propagation. This approach is used here for an exterior problem where a side of
an homogeneous opaque heat—conducting material (drilled by a finite number of
cylinders made of a different material) is illuminated by a laser beam at constant
frequency. By an indirect method for the two—dimensional Helmholtz equation
the problem is reduced to a system of integral equations. We propose a Petrov—
Galerkin method with piecewise constant functions to approximate the unknowns
on the boundaries (densities). The method is shown to be stable and convergent.
Keywords: Boundary integral methods, Galerkin methods, scattering, transmis-
sion problems
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1 Statement of the problem

Let us consider a finite number of simply connected bounded open sets €2y, ..., )y strictly
contained in the half-plane R? := {(x1,22) | 2o < 0} and such that Q;NQ; = 0 for i # j.
Let also II := {(z1,0) | z; € R}. The boundary of each €, denoted 'y, is assumed to be
a C? curve (see figure 1).

Let ;e be a solution of the Helmholtz equation in the half plane (incident wave)
AUjpe + NUjpe =0 in R2.
We are looking for a solution of the problem

Au+Nu = 0, in Q:=R>\ (U ),
Au+Xu = 0, in Q, k=1,...,d,
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Figure 1: The geometry of the problem

where \, A\ € (14+i)RT = {2z € C|rez =imz > 0}. We also demand that the solution

satisfies the boundary condition
anu|H - 8nuinc|l_l

and the transmission conditions on the inner boundaries

ulitt = ug,

ka?nu&zt = U@nuﬁff,
with v, > 0. Normals are directed towards the exterior of €2, for each k. The normal
on IT is directed upwards (pointing towards the exterior of €2).
Finally we demand that u — u;,. is a radiating wave, i.e., that u — wu;,. satisfies the
Sommerfeld condition at infinity [3], i.e.,

lim T1/2(8r(u — Uine) — AU — Ujpe)) =0

r—00

uniformly in all available directions (9, denotes the radial derivative).

Physical motivation. This problem arises in quality control of composite materials
consisting in a base with cilindrical incrustations to strengthen its structure. A particu-
larly suitable means of inspecting this kind of materials is to use photothermal techniques
as illuminating the upper surface by a defocused laser beam modulated at a given fre-
quency w.

After a sufficiently long time the temperature distribution becomes time-harmonic.
The periodic term of the temperature has the form T'(x,t) = Re(u(x)exp (iwt)). Our
unknown is u(x), the complex amplitude of the thermal wave.

The boundary condition models an adiabatic situation whereas the transmission con-

ditions model the continuity of temperature and heat flux [8]. U
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2 Uniqueness

If we take as unknown

U — Uine, in €,
u, in Qk kzl,...,d,

V=

(u — U, is called scattered wave), the transmission problem becomes

Av+ N2 =0, in €,

Av+ N2v =0, in Q, k=1,....d,

ol — vl = gf, k=1,...,d, 0
vOn 0| — vo vl = gf,  k=1,...,d,

Onv|n = 0,

lim, s 7/2(0,v — iAv) = 0 (Sommerfeld condition)

k. k._
where g5 1= —Uine|r, and g7 := —vO0,Uincr,, -

By construction we have that for all k
gy € H?(Ty), gt € HVA(Ty),

(see [3] for definitions of these usual Sobolev spaces in the boundary). The solution is

assumed to be such that v|g, € H' () for all k£ and
o € HL (@) = {v € D) |0 € H'(), % € D)},

It can be seen that any solution to this problem is smooth, up to II, and therefore
the boundary condition 0,v| = 0 is satisfied in a classical way, as happens with the
Sommerfeld radiation condition.

Moreover, we can prove the following result (see [2]).

Proposition 1 For arbitrary gk € HY*(T}), g¥ € H=Y/2(T'}), there exists a unique solu-

tion to (1) in the sense specified above.

3 Boundary integral formulation

In order to simplify the discussion we consider the simplest transmission problem in R?
with a single obstacle. Superscripts “+” and “~” correspond to the exterior (unbounded)
and the interior (bounded) domain respectively and I' is the common boundary.

We propose an indirect formulation with unknown densities ¢, ¢~ : T' — C

Sty*, inQF,
v =
S Y, inQ,
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where
R / @] —y]) + |- —F]) b(y) dly) : ©F — C,
S o= - / S| —y) b(y) dry) : @ — C,

— iHél) (z) the Han-

kel function of first kind and order zero (cf [1]), that can be decomposed as ®(z) =

being ¥ = (y1, —y2) the reflected point of y = (y1,y2) and ®(z) =

a(z?) log(z) + b(x?) with a, b entire functions.

By definition, v satisfies the corresponding Helmholtz equations in the exterior and
in the interior domains, the boundary condition on II and the Sommerfeld radiation
condition at infinity (see [3] Chapter 7).

The traces of the single layer potentials are given by the operators

Vi =8Mylr = —/F(CI’(A*I =y + @A =3]) d(y) dy(y) : T — C,
V=Sl = - [ 80—y e diy): T —
On the other hand, the traces of the normal derivatives of the single layer potentials
satisfy
ST = —¥ =T,
SVl = =T,
being

Jt = /Fan(-)(‘b(/\ﬂ'—Y|)+<D(/\+|'—5’|))¢(Y) dy(y): T — C,

76 = [0 sy e i) T — €

Remark. The kernels of the operators J* are continuous whereas the operators V* have

kernels with logarithmic singularities. O

Now we can express the transmission conditions in matrix form

[ o V- -V (h _ | % (2)
ot | v G —T7) v+ TY) | | vt o |

The first equation is the continuity of temperature and the second one is the continuity

of heat flux. Then we have the following result (see [2])

Theorem 2 £ : H Y2(I') x H~Y2(I') — HY*(T") x H=Y*(T") is an isomorphism. More-
over, there exists an elliptic operator Vo : H™Y*(T) — HY*(T) (i.e., E(Vob,o)) >
||¢||2_1/27F, € € C ) independent of \* such that

i -V
r_ Vﬁo R 0
51 51

18 compact.
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4 A Petrov—Galerkin method

Let x : [0,1] — T be a regular parameterization of the boundary I" which henceforth is

assumed to be smooth. We consider new unknowns,
v = 9F(x() [X'()] :0,1] — C,
data

go = go(x(-)),
g = [X()]gi(x(")),

and parameterized versions of the operators for which we keep the same notation,
1
Vi = —/0 (@AT]x() = x(B)]) + (AT |x(-) = %(t)) n(t) dt : [0,1] — C,
1
Vin = —/ (A7 |x(-) —x(t)])n(t)dt : [0,1] — C,
0
1
Tt = /0 [/ ()0 (RN [x(-) = x()]) + R(AT[x() = %(t)[)) n(t) dt : [0,1] — C,
1
= [ OGO O = xOha) dr 0,1] —
We consider the Sobolev spaces (see [4] Chapter 8, [7]),
H™:={¢ € D' [ [$(0) + Y [k["[6(k)]* < oo},

0£kETZ

where D’ is the space of 1-periodic distributions at the real line and

~

gb(k) = <¢7 exp(—?k:m '))D’X’D

are the Fourier coefficients of ¢. For all r € R, H" is a Hilbert space with inner product

(6,0), == S0)0(0) + Y [k o(k)(k).

0#keZ
Proposition 3 In the new notations,

V- -Vt
L=

CH Y2 x Y2 — HY? x g2
v (3I—J7) vT(GI+JT)

is an isomorphism and there exists an elliptic operator Vy : H='/? — HY? independent of
A\ such that

Ve =V,
r_ Vﬁo p 0
51 51

18 compact.
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We propose a Petrov—Galerkin method for the parameterized versions of the equations
above. Trial and test spaces are defined as follows: we construct a uniform mesh in [0, 1]

with nodes s; = ih and take a space of piecewise constant functions,
Sp =19 :0,1] = C | @ljs;_y,50 € Pol,
as trial space for both unknowns and as test space for the first equation. The space

Shi= (e € C0. 1) | 9(0) = 0l1), ¢y sy € P}

is taken as test space for the second equation. S} is formed by periodic first degree

polynomials between consecutive midpoints of the mesh nodes.

Remark. We base our choice of displaced polygonal functions on stability questions.

1/2.

The first equation takes place in H'/? whereas the second one occurs in H~'/?; as they

have different character, we take different test spaces to achieve the same convergence
order. 0

Given f,g € H°, we denote (f, g) fo t) dt. The numerical method is then:
Find ¢;7,v¢; € SP, such that

(V= = VT up) = (go, un), Vuy, € Sp, (3)
(v = J )y, + v (3T + J)Y ) = (g1,vn), Yo, € S

5 Analysis of convergence

Theorem 4 The equations (3) are uniquely solvable for h small enough. There exist
constants Oy, Cy > 0 independent of 1»* and h such that

[t = lloae + 107 = lloe < CORP2(0T L+ (171, (4)
[ = dplle + 107 =y ll2 < ColP([[F ]l + ([0 ]h). ()

Sketch of the proof:

The numerical method for the principal part of the operator L is:

Find ¢}, ¢, € S, such that
(‘/090}: - %90;7 uh) - (907 uh)v Vuy, € S}?? (6)
(% + 508 vm) = (g1,08),  You € Sp.

The principal part of the operator £ can be decomposed as

Vo —Vi Vi 0 [ I —1]

v 1/7L v V+ :

Ty S | 0 1|51 T
_p —Q
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The operator Q allows to do a change of variables and the equations (6) for the new
unknowns are uncoupled since P is diagonal. The numerical method in terms of the new

unknowns is
Find 7,7, n, € Sy, such that

(Vo » un) = (9o, un), Vuy, € Sy, (7)
(M > vn) = (91, vn), Yy € Sy

The first equation in (7) is a S§—Galerkin method for the operator Vj. Ellipticity of
Vo : H7Y/2 — H'Y2 implies that the S)-Galerkin method for V; is H~'/2-stable (see [4]
Chapter 13).

The second equation is a Petrov—Galerkin method for the identity operator with S
and S} as trial and test spaces respectively. We prove in first term H%-stability for the
identity operator and then, by means of inverse inequalities in the space S} (see [5] for
approximation and in verse properties of splines), we show H~'/2-stability. This follows
the same ideas given in [6].

1/2

Undoing the change of variables we obtain H ~/“—stability for the principal part:

lon ll-172 + llop ll-172 < C(lle™ =172 + ™ [ -12)-

Hence we have Céa’s estimate and from it and the approximation property of SP in H /2
we obtain convergence of the method (6) in H~Y/2 x H~1/2,

Standard compactness arguments yield stability and convergence in H /2 x H=/? for
the global operator L.

Finally, we obtain the convergence bounds: Céa’s lemma leads to (4) and Aubin—
Nitsche duality argument yields (5) (see [5] Chapter 1 for this kind of argumentation).

U
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