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Abstract

We study here a non cooperative system of n equations defined on IR™ which we
insert into a cooperative system of n+1 equations to obtain a ” Maximum Principle.”
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Introduction

We consider the following elliptic system on IRY:

(1) for 1 <i<n,
(12) Lqiui = (—A + qz)ul = Z?:l Q35U + fz in .ZRN

where:

(H1) for 1 <i,j <mn, a; € L*(R")

(H2) for 1 <i<n, ¢ is a continuous potential defined on IR" such that:

¢i(r) > 1, Vrc RY and ¢(z) — +oo when |z| — +o0

(H3) for 1 <i<mn, f; € L*(IRY)

Our paper is organized as follow:

- first, we recall some results on M-matrices and on cooperative systems

- in section 2, we adapt a method used by D.G. de Figueiredo and E. Mitidieri (see [8])

for insertion of a non cooperative system of two equations into a cooperative system of

three equations to obtain a ”Maximum Principle”

-in section 3, we obtain a ”Maximum Principle” for a non cooperative system of 3 equa-

tions then of n equations
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Definition 1.1 ([//) A matriz M = sI — B is called a non singular M-matriz if B is a
positive matriz and s > p(B) > 0 the spectral radius of B.

Proposition 1.1 (/4] th2.3 p.134) If M is a matriz with nonpositive off-diagonal coeffi-
cients, the conditions (PO0), (P1) and (P2) are equivalents where:

(P0) M is a non singular M-matriz

(P1) all the principal minors of M are strictly positive

(P2) M is semi-positive i.e.: 3X >> 0 such that MX >> 0
X >> 0 signify Vi, X; >0 if X = (Xy,..., X,)

Let D(IR™) be the set of functions C* on IR" with compact support and ¢ be a
continuous potential in R such that: ¢ > 1 and ¢(z) — +oc when |z| — +oo. The
variational space is V,(IR"): the completion of D(IR") for the norm ||.||, where |jul, =
[ p~ IVl + glul?)z. (V,(IRN),]].]|,) is an Hilbert space whose embedding into L(IR™) is
dense. (see A.Abachti-Mchachti [1] prop.I.1.1)

Proposition 1.2 (see [1] p25 to 27; [2] th1.1p4,p6,8,11; [3] p3,th3.2p45; [T] p488,489)
—A + q, considered as an operator in L>(IRY), is positive, selfadjoint, with compact in-
verse. Its spectrum is discrete and consists in an infinite sequence of positive eigenvalues

tending to +00. The smallest one, denoted by \(q), is a principal eigenvalue, positive and

simple.
[IVe|*+(g—a)$?]
For a € L®(IRY), let a* = sup jpv @ and Mg —a) = inf{flRN f]RN‘; ;0 €
D(RY); ¢ # 1.

We say that System (1) is called cooperative if the hypothesis (H1x) : forl <i,j <
n, a; € L*(IRY);a;; > 0 a.e for i # j, is satisfied.
We say that System (1) satisfies the Maximum Principle if: Vf; > 0, 1 < i < n, each
solution u = (uy, ..., u,) of (1) is nonnegative.
For any matrix A = (a;;) with bounded coefficients, let: A* = (a;;) and let E' = (e;;) be
the matrix n x n defined by: V1 <i < n, e; = Mg —ay) and V1 < i,5 <mn, i #j =
eij = —aj;. Let F' = (fi;) the matrix n x n be defined by: V1 <i <n, fi; = M¢; — ai;)
andV1<i,j<n,i#j= fij=—]a;l|" .

Recall the following theorems.

Theorem 1.1 (see [5] Th 4.2.2) Assume that (H1x),(H2),(H3) are satisfied. If E is a

non singular M-matriz, then System (1) satisfies the Mazimum Principle.

Theorem 1.2 (see [6] Th 3.1) Assume that (H1), (H2),(H3) are satisfied. If F is a non

singular M-matriz, then System (1) has a solution.
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2 Insertion of a non cooperative system of two equa-

tions into a cooperative system of three equations

We redefine System (1) for n=2 by

) (=A 4+ q)u=au+bv+ f in RN
(=A 4+ g)v = cu+dv + g in RY

where (H1) becomes a, b, c,d € L®(IR"). We follow here a method used in [8].

Theorem 2.1 (see [5] Th 5.2.1) Consider System (1') where a,b, c,d are reals and ¢, =
G =q¢b<0,¢>0,a>d, (a—d)?+4bc> 0. Assume (H2) and (H3) satisfied. Let:
§=(a—d)*+4bc, r = a__d%l:f/g, s = “+d2_\/5, v=-=2IfXq) >a—r, Xgq)>d, \q) > s,
then: f>0,9g>0, f=v9g>0=u>0, v>0.

Proof of Theorem 2.1:
Let w = u — v, where (u,v) is a solution of (1’). Then (u,v,w) is a solution of the

following cooperative system (2):

(=A+qu=(a—7r)u+ (b+ry)v+rw+ fin RY
(2)3 (~A+qv=cu+dv+gin RY
(=A+Qw=(a—cy—s)u+ (b—dy+sy)v+sw+ f —~gin RY

Let:
Ag)—a+r 0 —r
B = —c Ag) —d 0
0 0 Aq) — s

Since B is a non singular M-matrix, System (2) satisfies the Maximum Principle.
So: f>0,9>0,f—v9>0=u>0,v>0,w>0.

Theorem 2.2 Consider System (1'). Assume that (H1),(H2),(H3) are satisfied. Let
(u,v) solution of (1"). Let:

(H4) b<0;¢>0

(H5) ¢ = q1 + k with k € L=(IRN) N C(RY).

(H6) a+k—d>0; 6= (a+k—d)?+4bc >0

(HT7) m = sup v (Z2=5EY0) < M = inf jp (Z2=hEd0),
Let o €lm, M[(aw = m if m = M). Note that a < 0.

(H8) AMa1 —a) > 0; Mgz —d) > 0; Ma1 — a)Mgz — d) > (=b)*c* >0
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(H9) Mg1—a)>(a+k—d)*>0

Assume that Hypothesis (H4) to (H9) are satisfied.
Then: (f>0,9>0, f+ag>0=u>0,v>0.)

Proof of Theorem 2.2: Denote k; = —%q1+%q2, r= % € LOO(ZRN) and s = a+ac+k, €
L®(IRY). Let w = u + aw and ¢3 = %ql + %QQ. We have:

(~A+q)u=(a—r)u+t(b—arw+rw+ fin RY

(=A+q)v=cu+dv+gin RY

(—A+@w=(a+ac—s+k)u+ (b+ad—sa+alk —k))v
+sw+ f+ ag in RY

(2)

By (H4) and (H6) we show that System (2) is cooperative. Let:

Mg —a+r) 0 —r*
L= —c* Mgz — d) 0
0 —[b+ ad — sa+ a(k — k)" Mgz —9)

We use (H8) and (H9) to prove that L is a non singular M-matrix. Applying Theorem
1.1, we deduce that: (f >0, ¢9>0, f+ag>0=u>0, v>0.)

3 Insertion of a non cooperative system of n equa-

tions into a cooperative system of n 4+ 1 equations

First consider in this section the non cooperative System (1) forn =3 and ¢ = ¢; = ¢2 =
q3. We study two cases: first, we study a particular case when one off-diagonal coefficient
is equal to 0, another one is negative and all the others are positive; then we study another

case when all the off-diagonal coefficients are constants not equal to 0.

Theorem 3.1 Let:
(H]_O) as =0; a;p € IR*i; ais € IR**.

1); (1,3)}, ai; € LOO(]RN), as §é 0 and

(H11) V(i j) € {(1,2); (2,

v(i,5) & {(1,2); (2,

(H12) aisaszp+ageala _ a1zasztagsaly _ = LOO(RN)

a2 a13

(H13) Ir € R*", ayy >~y +r =s¢c L®(RY)
(H14) F a non singular M-matriz (see section 1 for the definition of F)
(H15) (/\(q — CL11))2 > ’I‘(CLH — 8)* + (a,lga,gl)*
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Assume that the hypothesis (H2),(H3) and (H10) to (H15) are satisfied.
Then: (fi >0, f2 >0, f3>0, fi+*2fo + 9 f3>0=u; >0, up >0, uz >0.)

Proof of Theorem 3.1:

a) Remark: The existence of a solution for System (1) is due to the hypothesis (H2),
(H3) and (H14).

b) Let uy = uy + “2uy + “uz. By (H12) and since s = r + 1, (u1, u2, us, uy) is solution

of the following System (2).

A+ q)uy = (a1 — r)uy +rug + fi in RY

A + q)uy = agty + agus + fo in RY

A + q)us = asiuy + aspus + assus + fs in RY
)

A+ qJuy = USO8y gy - fy 02 fy 93 fyin RV

T

(_

(_
2
@1

(_

c) We show by (H10) and (H13) that System (2) is cooperative.

d) Let
Mg —ayn +1) 0 0 -
H_ 0 Mg — ag) —a; 0
—az, —a3y Mg — ass) 0
—(lan=srtasan ) 0 0 g —s)

We verify that D is a non singular M-matrix.Indeed, by (H14) and (H15), we prove
that all the principal minors of D are positive.
Hence System (2) satisfies the Maximum Principle and:
a12 ais

f120, >0, f5>0, i+ —fo+—f320=u; >0, upg >0, ug > 0.
r r

Remark: If a1 = —ay3 € IR™, then (H12) becomes agy — aza = agz — ao3.

Theorem 3.2 Let:
(H]_G) Vi 7’é 7, a;j € IR* and i, 7é Jos Qigjo > 0.

(H17) a13Q93 > O, ao10a31 > 0, a12ass > 0.
Ifi # j and a;; > 0, let s;; < 0 such that a;; + s;; > 0.
If i # j and a;; <0, let s;; > 0 such that a;; + s;; > 0.

(H18) 512531523 = 521513532
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By (H17) and (H18) we can choose ayqy > 0,as4 > 0,a34 > 0 and oy, ag, ag reals such
that: so1+agq0ry = 831 +a3401 = S12+ 1402 = S32+ g4 = 513+ Q1403 = Sa3 + a0 = 0.
Let:

(H]_g) ay; = _042(1210-:-104311317 A9y = _a10120-;a3a327 as3 = _a1a13(;:a2a23.
(H20)
Mg — an + ajqon) —(ay2 + s12) —(a13 + s13)
M = —(ag; + s91) A(q — ags + aggors) —(ag3 + S23)
—(as; + s31) —(aga2 + s32) (g — ags + agsors)

a non singular M-matriz.

(H21) F a non singular M-matriz.

Assume that the hypothesis (H2), (H3) and (H16) to (H21) are satisfied.
Then: (f1 20, f2 >0, f3>0, arfi+asfo+asfs >0=u; >0, up >0, ug >0.)

Proof of Theorem 3.2:

a) Remarks: The existence of a solution for System (1) is due to the hypothesis (H2),
(H3) and (H21). Note that: Vi, «; has the same sign than a;; Vj # i. By (H16),

there exists at least one a; > 0.

b) Let uy = ajuy + asus + azus. By (H19), (uy,us, us, uy) is solution of the following

cooperative System (S).

—A + g+ ajay)u; = apug + (arg + s12)us + (13 + S13)us + arguy + fi in IRY
—A + g+ aa24)us = (a1 + S21)us + Azt + (azs + S23)u + azqug + fo in RY
—A + q + azaz)uz = (az + s31)ur + (az2 + S32)us + azsus + agqus + f3 in RY
~A+qQuy = o1 fi +asfo +asfs in RY

c) Let
Mg — ain + apgaq) —(aia + $12) —(a13 + s13) —a14
O— —(ag1 + s21) Mg — ag + agas) —(ag3 + s23) —Q24
—(as1 + s31) —(ase + s32) Mg — ass + agqos) —asy
0 0 0 A(q)

By (H20), O is a non singular M-matrix.

Hence System (.5) satisfies the Maximum Principle and:
f120, 220, f520, aufi +aofo+asfs 20=u >0, up >0, ug >0.

We give some examples.
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Example 1 Let
(—A+q)uy = %ul — Uy + 2us + f1 in RN
(1) (=A+ Qug = —uy + %'UQ + 2us + fo in RN
(—=A + q)us = —uy — ug + Sug + f3 in RY
We can choose s13 = S93 = —1, S91 = 831 = S12 = S30 = 2, Q14 = G4 = A34 =

1, 041:0{2:—2, CY3:1.
Example 2 Let a € IR*" and

(—=A + q)uy = —auy + aus + f, in RY
(1) (=A+q)uy = —auy + aus + fo in RY
(—=A + q)us = —auy — auy + 2aus + f in RY

We can choose s13 = S93 = —8S91 = —831 = —819 = —S30 € IR™™, 14 = Gog = a34 €

R*Jr, 0] = Qg = —(3 € IR
Example 3 Let o, 3,7 reals, a € IR*", b€ IR*", c € IR*™ and

(—=A + q)u1 = auy + cuy + aus + f, in RY
(D)3 (A +q)us = buy + Bus + aus + f> in RY
(—=A + q)uz = buy + cug + yus + f3 in RY

We can choose s13 = So3 = 5 € IR*™, 591 = 8531 = ' € IRV, 519 = 530 = 5" € IR*".
Then : Ja; € IR, Jay € IR*, Jaz € IR™ such that: ;—1 = s

[ s’

(H19) becomes: a = —pte2 3= _castar =, — _goatar
oy oy ) as

We conclude by giving a generalization for a system of n equations.
Theorem 3.3 Let: Vi,q; = q and

(H22) Vi, j, a;; € R and Fjo, Vi, i # jo = az;, >0

Let Vj, a; = min;(a;;).
(H23) Vj, aj(aj; — 1) = = XL sy ciay
(H24) Vi, Mq) > 1+ X5 (ay; — a;) and Mq) > X7 (XL, ciay — o) + 1

Assume that the hypothesis (H2),(H3) and (H22) to (H24) are satisfied.
Then: Vi, f; >0 and >, o f; > 0= Vi, u; > 0.

Proof of Theorem 3.3: Let u,.1 = > -, ayu;. We have: Vi = 1,....n, (=A + q)u; =
o (@i —ag)uj+up + fi and (=A+q)un = X0 (0 @ity — o) uj+ U+ i fi.
Let B be the matrix associated to the above system and *X = (1,...1). We have BX >> 0
so B is a non singular M-matrix. Applying Theorem 1.1, we obtain the result of the

Theorem 3.3.
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