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Abstract

In this paper we enrich a result of the authors on the local saturation of k-

convex operators, so that it can be applied to more general situations. We deal with

different shape properties of the operators and with different asymptotic expressions

for them. Some applications are shown to the well known approximation operators

of Bleimann-Butzer-Hahn, Kantorovich and to a generalized version of the Szász-

Mirakyan operators.
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1 Introduction

In 1964 Lorentz [8] solved the problem of the saturation of the classical Bernstein operators

Bn defined on C[0, 1]. He established that |Bnf(x)−f(x)| ≤ (1/2n)Mx(1−x), 0 < x < 1 if

and only if f ′ ∈ LipM1. This result found further development in two papers of Mühlbach

[10] and Lorentz and Schumaker [9]. They dealt with a general sequence of linear positive

operators satisfying an asymptotic formula of Voronovskaya type.

Recently, the authors [4], given k ∈ N0 = N∪{0}, a closed real interval I and a sequence

of linear operators Ln : Ck(I) → Ck(I), have proved a new result on local saturation for

DkLn (Dk is the k-th differential operator) under the following more general assumptions:

A) the operators are k-convex, that is to say, Dkf ≥ 0 implies DkLnf ≥ 0,

B) there exist a sequence λn of real positive numbers and a function p ∈ Ck(I) strictly

positive on Int(I) such that for all g ∈ Ck(I), bounded on I and k + 2-times

differentiable in some neighborhood of x ∈ Int(I),

λn(DkLng(x) − Dkg(x))
n→∞

−→ Tg(x), (1)
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T being the operator defined by Tg := Dk(pD2g).

Moreover, recent advances on the establishment of this kind of asymptotic expressions for

the k-th derivatives of certain shape preserving operators allowed the authors to show as

well some applications to outstanding sequences of operators.

In this paper we enrich this result so that it can be applied to sequences of operators

that either they are not k-convex or they do not satisfy an asymptotic formula as the one

above. Specifically, in the first case we shall obtain a result on the saturation of D2Ln

without the 2-convexity of the operators Ln and in the second case we shall replace the

limit in (1) by generalizing slightly the definition of the operator T . The results will

be applied to the well-known operators of Bleimann-Butzer-Hahn, Kantorovich and to a

generalized version of the Szász-Mirakyan’s.

2 A local saturation result revisited.

We begin assuming A) and B) and recovering the essential statements that the authors

proved in [4].

Result 1 a) The linear differential equation Tg ≡ 0, with the unknown function g, can

be reduced to a second order one, Lz ≡ 0 say, by using the variable change z = Dkg.

b) If f ∈ Ck(I), bounded on I, is a solution of Tg ≡ 0 on some neighborhood of a point

x ∈ Int(I), then

DkLnf(x) − Dkf(x) = o(λ−1
n ).

c) Let M ≥ 0 and let a, b ∈ Int(I) with a < b. Assume that there exists a fundamental

system of solutions of Lz ≡ 0 (see a)), say {z0, z1}, which form an Extended Complete

Tchebycheff System on (a, b) (see [9] for details) and consider a function w ∈ Ck(I),

bounded on I, such that for all t ∈ (a, b)

Dkw(t) = z0(t)
∫ t

c

W (z0, z1)

z2
0

(α)dα
∫ α

c
dβ,

being W (z0, z1) the Wronskian of z0, z1 and c a fixed point a < c < b. Then for f ∈ Ck(I),

bounded on I,

λn

∣

∣

∣DkLnf(x) − Dkf(x)
∣

∣

∣ ≤ MDk(pD2w)(x) + o(1), x ∈ (a, b),

if and only if
1

W (z0, z1)

(

z0D
k+1f − D1z0D

kf
)

∈ LipM1 on (a, b).

In the following two propositions we modify separately the aforementioned general

hypotheses A) and B) and prove that a result as the one above holds.
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Proposition 1 Result 1 holds true if we keep on assuming A) and in B) we redefine the

operator T to be Tg := Dk(qD1g + pD2g) with p in the same conditions and q ∈ Ck(I).

Proof. It suffices to recover the proof of Result 1 in [4] and recall that the specific form

of the asymptotic expression entered the picture just when we considered a function w̃ in

order that T w̃(x) = Dk(pD2w̃)(x) was a positive constant. Here we can consider w̃ such

that for all t ∈ (a, b),

D1w̃(t) = e−
∫ t

c

q(z)
p(z)

dz
∫ t

c

ek(x)

p(x)
e
∫ x

c

q(z)
p(z)

dzdx.

Merely for the sake of completeness and thinking about applications, observe that the

differential equation Lz ≡ 0 which appears in a) has the following form:

Lz = pD2z + (q + kD1p)D1z +

(

k(k − 1)D2p

2
+ kDq

)

z ≡ 0.

Indeed, for k ∈ N the k-th convexity of the operators implies that for i = 0, . . . , k − 1

DkLnei ≡ 0 so from B) one has that Tei(t) = Dk(qD1ei +pD2ei)(t) = 0 for all t ∈ Int(I).

Then it suffices to consider the change z = Dkg in the equation Tg ≡ 0.

Proposition 2 Result 1 holds true in the particular case k = 2 and I = [I1, +∞) with

I1 ∈ R, if we keep on assuming B) and, instead of the 2-convexity of the operators (see

A)), we assume that D2Lnf ≥ 0 whenever simultaneously D2f ≥ 0 and D1f ≤ 0.

Proof. Notice that for i = 0, 1, Tei ≡ 0, so a) is clear. Moreover, b) is a very direct

consequence of B). On the other hand, the proof of c) resembles closely the corresponding

one in [4] but some steps concerning the use of the shape preserving properties of the

operators must be modified, so we write it completely. We first state two lemmas which

are proved at the end of the section.

Lemma 1 If f ∈ C2(I), bounded on I, satisfies that D1f ≤ 0 and D2f ≥ 0 on some

neighborhood Nx of a point x ∈ Int(I), then D2Lnf(x) + o(λ−1
n ) ≥ 0

Lemma 2 Let g ∈ C2(I), bounded on I. D2g is convex on (a, b) with respect to z0 and

z1 (see [9] for details) if and only if

D2Lng(x) ≥ D2g(x) + o(λ−1
n ), x ∈ (a, b).

Now, we first observe that from B)

lim
n→+∞

λn

(

DkLnw(x) − Dkw(x)
)

= Dk
(

pD2w
)

(x), x ∈ (a, b),

so applying Lemma 2 to the functions Mw ± f , it is derived that

λn

∣

∣

∣D2Lnf(x) − D2f(x)
∣

∣

∣ ≤ MD2(pD2w)(x) + o(1), x ∈ (a, b),
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if and only if MD2w ± D2f are convex on (a, b) with respect to z0 and z1.

On the other hand, if we consider a constant α ∈ R such that z̃1 := z1 + αz0 verifies

z̃1(c) = 0, then u0 := z0, u1 := z̃1 and u2 := Dkw constitute an ECT-system formed from

the functions w0 := z0, w1 := W (z0, z̃1)/z
2
0 and w2 := e0 in the way that it is shown in

Chap.XI of [5].

Finally, from Lemma 3.1 of [9], MD2w ± D2f are convex on (a, b) with respect to

z0 and z1 if and only if D2f belongs to the class LipM1 with respect to u0, u1, u2 (see

[9] again for a detailed definition), or equivalently if and only if 1
w1

D1
(

1
w0

D2f
)

∈ LipM1

(now in the classical sense), what ends the proof of c), Result 1 just observing that

W (z0, z1) = W (z0, z̃1). 2

Proof of Lemma 1. First of all we observe that there exists another neighborhood of

x, θx ⊂ Nx, and a function f̃ ∈ C2(I), bounded, with D1f̃ ≤ 0 and D2f̃ ≥ 0 such that

for all t ∈ θx, D2f(t) = D2f̃(t).

Indeed, it suffices to take any x1, x2 ∈ Nx, with x1 < x < x2, the choose any x0 ∈ Nx,

x2 < x0, satisfying Df(x2) ≤
x2−x0

2
D2f(x2) and finally let θx = (x1, x2) and let f̃ be any

function in C2(I), bounded on I such that

Df̃(t) =































Df(x1) + D2f(x1)(t − x1) si 0 ≤ t ≤ x1

Df(t) si x1 < t ≤ x2

u(t) si x2 < t ≤ x0

v(t) si x0 < t

where

u(t) =

(

Df(x2) −
x2

2 − 2x0x2

2(x2 − x0)
D2f(x2)

)

−
x0D

2f(x2)

x2 − x0

t +
D2f(x2)

2(x2 − x0)
t2

v(t) =
(3x2

0Du(x0))t − 2x3
0Du(x0)

t3

Finally we apply the shape preserving property to the function f̃ , the part b) of the Result

1 to the function f − f̃ and the proof follows easily.

Proof of Lemma 2. Let x ∈ (a, b). If D2g is convex on (a, b) with respect to z0 and

z1, then there exist a solution of Lz ≡ 0, z = z(t) say, such that z(t) ≤ D2g(t) for all

t ∈ (a, b) and z(x) = D2g(x). Now we take y ∈ Ck(I), bounded on I, solution of Tg ≡ 0

such that D2y(t) = z(t) for all t ∈ (a, b) and D1y(b) = D1g(b). From Lemma 1

D2Lny(x) ≤ D2Lng(x) + o(λ−1
n ),

or equivalently

D2Lny(x) − D2y(x) ≤ D2Lng(x) − D2g(x) + o(λ−1
n ),

from which the result follows just applying b), Result1 to the function y.
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For the converse, we denote by S (h, t1, t2) the unique solution of Lz ≡ 0 which inter-

polates the function h at the points t1 and t2. Now, if we assume that D2g is not convex

on (a, b) with respect to z0 and z1, then there exist a < t1 < x < t2 < b such that

S
(

D2g, t1, t2
)

(x) < D2g(x).

Now, given any w̃ ∈ C2(I), bounded on I, we can find a positive constant ε > 0 such that

S
(

εD2w̃ + D2g, t1, t2
)

(x) <
(

εD2w̃ + D2g
)

(x).

Indeed, if D2w̃(x) − S (D2w̃, t1, t2) (x) ≥ 0 we can take any ε > 0, and otherwise we can

take

0 < ε <
D2g(x) − S (D2g, t1, t2) (x)

S (D2w̃, t1, t2) (x) − D2w̃(x)
.

Now, if we call z̃ a solution of Lz ≡ 0 which is strictly positive on (a, b) (its existence if

guaranteed), then the function

εD2w̃ + D2g − S (εD2w̃ + D2g, t1, t2)

z̃

is continuous in [t1, t2], it vanishes at the end points of this interval and it is strictly

positive at the point x, so it reaches its maximun, say m, at a point x̃ ∈ (t1, t2).

Consequently (εD2w̃ + D2g) (x̃) = (S (εD2w̃ + D2g, t1, t2) + mz̃) (x̃), and for all t ∈

(t1, t2), (εD2w̃ + D2g) (t) ≤ (S (εD2w̃ + D2g, t1, t2) + mz̃) (t). Now we take ỹ, s ∈ C2(I),

bounded on I, and a linear function r, solutions of Tg ≡ 0 on (t1, t2), such that on this

interval D2s = S (εD2w̃ + D2g, t1, t2), D2ỹ = z̃, and s + mỹ − (εw̃ + g) + r is a non

increasing function. Then we apply Lemma 1 to obtain

εD2Lnw̃(x̃) + D2Lng(x̃) −
(

εD2w̃(x̃) + D2g(x̃)
)

≤ D2Lns(x̃) + mD2Lnỹ(x̃) −
(

D2s(x̃) + mD2ỹ(x̃)
)

+ o(λ−1
n ),

from which if we apply apply b), Result 1 to the functions ỹ and s we obtain

D2Lng(x̃) − D2g(x̃) ≤ −ε
(

D2Lnw̃(x̃) − D2w̃(x̃)
)

+ o(λ−1
n ).

Finally we get a contradiction if we choose for instance w̃ such that on (a, b) D2w̃ = e2/p,

apply B) to it, and recall the strict positivity of ε.

3 Applications

In this section we shall apply the previous results to three well known sequences of opera-

tors. As we have already said we shall work with the Kantorovich operators, Kn, defined

on the classical space L1[0, 1] by

Knf(t) = (n + 1)
n
∑

p=0

(

n

p

)

tp(1 − t)n−p

∫
p+1
n+1

p

n+1

f(z)dz,
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and also with the generalized Szász-Mirakyan operators, Sv,n, v ∈ N0, and the Bleimann,

Butzer and Hahn operators, Hn, defined both on C[0,∞) respectively as

Sv,nf(t) = e−(n+v)t
∞
∑

p=0

f
(

p

n

)

(n + v)ptp

p!
,

Hnf(t) = (1 + t)−n
n
∑

p=0

f
(

p

n − p + 1

)

(

n

p

)

tp.

As far as the conservative properties that these operators possess, it is only too well-

known that Kn and Sv,n are k-convex for all k ∈ N0. When v = 0, Sv,n are the already

classical Szász-Mirakyan operators. In the sequel we do not consider this case as it was

studied in [4]. Hn, as well as be 0-convex and 1-convex, they satisfy that D2f ≥ 0 provided

that simultaneously D2f ≥ 0 and D1f ≤ 0 (see [6]).

We shall apply Proposition 2, ii) to Hn and Proposition 1 to Kn and Sv,n, after

showing of course that they posses an asymptotic expression of the required type, that in

the more general form we reproduce here for the sake of clarity: ‘there exist a sequence

of real positive numbers λn and two functions, p ∈ Ck(I) strictly positive on Int(I), and

q ∈ Ck(I)’ such that for all g ∈ Ck(I), bounded on I and k + 2-times differentiable in

some neighborhood of x ∈ Int(I)

λn(DkLng(x) − Dkg(x))
n→∞

−→ Dk(qD1g + pD2g)(x). (2)

In the following table one can read the interval I and the values of k, λn, p = p(t) and

q = q(t) that make (2) be satisfied for each case. We also write the reference papers where

the formulae were proved:

Ln I k λn q(t) p(t) References

Hn [0,∞) k = 2 2n 0 t(1 + t)2 [7]

Kn [0, 1] k = 0, 1, . . . 2(n + 1) 1 − 2t t(1 − t) [2],[1],[7]

Sv,n [0,∞) k = 0, 1, . . . n vt t
2

[7]

Hence we are in a position to apply our results and obtain the so called saturation

classes. We shall only take care of the application of claim c) since a) and b) can be

seen as tools. With that purpose we present another table that summarizes the required

information. It contains for each case a fundamental system of solutions of the reduced

differential equation Lz ≡ 0, z0 and z1, that constitute an Extended Complete Tchebycheff

System, and the values of W (z0, z1) and Dk(qD1w+pD2w) calculated maybe with the aid

of a computer program. In the table it appears the function Γ(t) = e−2vt
∫+∞

−2tv
e−x

x
dx+log t.
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Ln z0(t) z1(t) W (z0, z1)(t) Dk(qD1w + pD2w)(t)

Hn

k = 2 1
t(1+t)2

1
(1+t)2

1
t2(1+t)4

1

Sv,n

k = 0 1 −e−2tv

2v
e−2tv te−2tv

2

k > 0 e−2tv (−1)k+1

2(k−1)!v
DkΓ(t) e−2tv

tk
1

2tk−1

Kn

k = 0 1 log t

1−t

1
t(1−t)

1

k > 0 1
tk

(−1)k+1

k(1−t)k
1

tk+1(1−t)k+1
1

(1−t)k

Below we use the notation ei(t) = ti and γ(t) = e−2tv .

Corollary 1 (Hn) Let 0 < a < b, then for f ∈ C2[0,∞), bounded on [0,∞),

2n
∣

∣

∣D2Hnf(x) − D2f(x)
∣

∣

∣ ≤ M + o(1), x ∈ (a, b),

if and only if

e1(e0 + e1)
2D3f + (e0 + 4e1 + 3e2)D

2f ∈ LipM1 on (a, b).

Corollary 2 (Sv,n) Let 0 < a < b, then for f ∈ C[0,∞), bounded on [0,∞),

n |Sv,nf(x) − f(x)| ≤ M
xe−2vx

2
+ o(1), x ∈ (a, b),

if and only if
1

γ
D1f ∈ LipM1 on (a, b),

and for f ∈ Ck[0,∞), k ∈ N, bounded on [0,∞),

n
∣

∣

∣DkSv,nf(x) − Dkf(x)
∣

∣

∣ ≤ M
1

2xk−1
+ o(1), x ∈ (a, b),

if and only if

ekD
k+1f + 2vekD

kf ∈ LipM1 on (a, b).

Corollary 3 (Kn) Let 0 < a < b < 1, then for k ∈ N0 and f ∈ Ck[0, 1],

2(n + 1)
∣

∣

∣DkKnf(x) − Dkf(x)
∣

∣

∣ ≤ M
1

(1 − x)k
+ o(1), x ∈ (a, b),

if and only if

e1

(e0 − e1)k+1
Dk+1f + k(e0 − e1)

k+1Dkf ∈ LipM1 on (a, b).
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Remark 2 In this paper we have not mentioned anything about the trivial classes for the

saturation problems we are dealing with. For this matter we refer the reader to [4] where,

roughly speaking, it was stated that these classes were formed for the spaces of solutions

of the differential equation Tg = Dk(qD1g+pD2g) ≡ 0 which can be easily obtained from

z0 and z1, solutions of the reduced equation Lz ≡ 0.
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Verlag, Basel and Stuttgart (1964).

[9] G. G. Lorentz, L. L. Schumaker, Saturation of Positive Operators, J. Approx. The-

ory, 5 (1972), 413-424.
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