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Abstract

Bilevel programming involves two optimization problems where the constraint

region of the first level problem is implicitly determined by another optimization

problem. In order to assure that they are well posed, when analyzing bilevel prob-

lems it is usually assumed that, for each value of the first level variables there will

be a unique solution to the second level problem.

This paper is concerned with the behavior of local optimal solutions to the

Quasiconcave Bilevel Programming (QCBP) problem when the previous assumption

is dropped. Necessary and sufficient conditions for a local solution to the second

level problem to be isolated are established in order to guarantee that a local solution

to the QCBP problem is found which is an extreme point of the polyhedron defined

by the common constraints.
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1 Introduction

Bilevel programming has been applied to decentralized planning problems involving a

decision process with a hierarchical structure. In terms of modeling, bilevel problems are

programs which have a subset of their variables constrained to be an optimal solution of

another problem parameterized by the remaining variables. They can be formulated as:

Minimize f1(x1, x2), where x2 solves

Minimize f2(x1, x2) (1)

subject to: (x1, x2) ∈ S,
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where x1 ∈ R
n1 and x2 ∈ R

n2 are the variables controlled by the first level and the second

level decision maker, respectively; f1, f2: R
n −→ R, n = n1 + n2 and S = {x ∈ R

n :

gj(x) ≤ 0, j = 1, . . . , m} defines the common constraint region. Notice that the feasible

region of the first level problem is defined implicitly by the second level optimization

problem.

Let S1 be the projection of S onto R
n1 . Given x1 ∈ S1, the second level decision maker

solves problem (2). So, the second level problem is parameterized by the variables of the

first level.

Minimize f2(x1, x2)

subject to: x2 ∈ S(x1) = {x2 : (x1, x2) ∈ S}. (2)

Let M(x1) denote the set of optimal solutions to (2). Hence, the feasible region of the

bilevel problem, called induced region, can be implicitly defined as

IR = {(x1, x
∗

2) : x1 ∈ S1, x∗

2 ∈ M(x1)}.

The features of the problem, mainly its non-convexity, make it a difficult one, even

when all involved functions (f1, f2, gj, j = 1, . . . , m) are linear. In fact, most results have

been obtained in this case. In the nonlinear case, it is usually assumed that the second

level objective function f2 and the functions gj are convex. A survey of references on

bilevel problems, in both the linear and the nonlinear cases, can be found in [7].

In this paper a special case of (1) is considered in which functions f1 and f2 are qua-

siconcave and S is a polyhedron, which is assumed to be non-empty and bounded. This

problem, known as the quasiconcave bilevel programming problem, includes as important

particular cases those problems in which both objective functions are linear, are ratios of

concave and convex functions or are multiplicative. Besides, under the usual assumption

that for each value of the first level variables there exists a unique solution to the sec-

ond level problem, it is possible to prove that there is an extreme point of the common

constraint region S which solves the QCBP problem [3].

The purpose of this paper is to study the behavior of local optimal solutions to the

QCBP problem when the mentioned uniqueness of the second level optimal solution is not

assumed. We will establish necessary and sufficient conditions for a local solution to the

second level problem to be a locally unique local solution (an isolated solution) in order

to guarantee that a local solution to the QCBP problem is found which is an extreme

point of the polyhedron S.

The paper is organized as follows. In the next section an example is given which

allow us to show the inherent difficulties which arise when the set of optimal solutions

to the second level problem is not a singleton. Besides some remarks are made about

different approaches which have been considered in the literature to deal with this problem.
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In section 3 we review relevant results from nonlinear sensitivity analysis theory and

introduce some basic concepts useful in proving the main results of the paper, given in

section 4. Finally, in section 5 concluding remarks are drawn.

2 What does it happen when non-unique optima so-

lutions to the second level problem are allowed?

Problems caused by the existence of multiple optima when solving the second level

problem for given x1 ∈ S1 have already been considered for the linear bilevel problem

(see [1, 2]). The following simple QCBP problem (3) allows us to show that the first

level decision maker could not reach his optimal decision without ‘force’ the decision of

the second level decision maker. Let us consider problem (3) in which x1 is the variable

controlled by the first level decision maker and x2 is the variable controlled by the second

level one.

Minimize x1 + x2, where x2 solves

Minimize
−x1 + 2x2 + 7

x1 + x2 + 2
subject to:

3x1 − 5x2 ≤ 15

3x1 − x2 ≤ 21 (3)

3x1 + x2 ≤ 27

3x1 + 4x2 ≤ 45

x1 + 3x2 ≤ 30

x1, x2 ≥ 0

Notice that for x1 = 1 the second level problem has multiple optima, M(1) = [0, 29
3
].

So, the optimization problem of the first level is ill-posed. The first level decision maker’s

problem would be

Minimize f1(x1, x
∗

2)

subject to: x1 ∈ S1, x
∗

2 ∈ M(x1), (4)

which is not well defined at points where M(x1) is not a singleton.

For evaluating f1(1, x
∗

2) it is necessary to give a rule for selecting x∗

2 ∈ M(1). Moreover,

the best value for the first objective function is f1 = 1 obtained when x1 = 1 and x2 = 0.

However the first level decision maker can not force this value because the second level

decision maker is indifferent to each x2 in the interval [0, 29
3
].
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On the other hand, if the first level objective function was f1 = −x1 + 3x2, then the

first level decision maker could reach his minimum f1 = 5, obtained when x1 = 5, since

the second level problem given x1 = 5 has a unique optimal solution x2 = 0.

Different approaches have been proposed in the literature to assure that the bilevel

problem is well posed. The most common one is to assume that, for each value of the

first level variables x1, there is a unique solution to the second level problem, that is,

the set M(x1) is a singleton for all x1 ∈ S1. Some authors have considered the weaker

assumption that M(x∗

1) must be a singleton only if the selection x∗

1 provides an optimal

solution for the bilevel problem.

Other approaches focus on the way of selecting x∗

2 ∈ M(x1), in order to evaluate

f1(x1, x2), when M(x1) is not a singleton. Among the rules that have been proposed [5],

it is worth mentioning the optimistic or weak approach and the pessimistic or strong

approach. The first one assumes that there exists cooperation between levels, so that the

second level decision maker always select the variables x2 to provide the best value of f1,

i.e.

x∗

2 = argmin{f1(x1, x2) : x2 ∈ M(x1)}.

In the second one, the first level decision maker behaves as if the second level decision

maker always selects the optimal decision which gives the worst value of f1, i.e.

x∗

2 = argmax{f1(x1, x2) : x2 ∈ M(x1)}.

Finally, other approaches perturbs the second level problem [4] so that, under not

too restrictive assumptions, the optimal solution of the regularized problem is uniquely

determined.

In this paper, we investigate the possibility of finding a continuous function x2(x1)

such that for each x1 ∈ S1 a point x2 ∈ S(x1) will be uniquely determined which will

be optimal in a local sense. Under the assumptions that guarantee the existence of this

function, we will prove that there exists an extreme point of S which is a local solution

to the QCBP problem.

3 Local optimality and sensitivity result

As far as we know, the concept of local solution in bilevel programming was first introduced

by Falk and Liu [6]. For the sake of self-containedness, we briefly list in this section some

useful definitions and a proposition presented in [6].

Definition 1. A point (x1, x2) is a semi-local solution to (1) if (x1, x2) ∈ S and x2 is a

local solution to (2) with x1 fixed.

Definition 2. A point (x∗

1, x
∗

2) is said to be a [strict] local solution to (1) if
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(a) (x∗

1, x
∗

2) is a semi-local solution,

(b) there exists a neighborhood U of (x∗

1, x
∗

2) such that [f1(x
∗

1, x
∗

2) <

f1(x1, x2)] f1(x
∗

1, x
∗

2) ≤ f1(x1, x2) for all semi-local solutions (x1, x2) ∈ U .

Theorem 3. (Proposition 2.7 in [6]) Suppose Karush-Kuhn-Tucker (KKT), Strong Se-

cond-Order Sufficient (SSOS) and Linear Independence (LI) conditions hold at x0
2 with

multipliers u0 for (2) with x1 = x0
1, and that functions f2 and gj, j = 1, . . . , m are C(2 in

a neighborhood of (x0
1, x0

2).

Then, for x1 in a neighborhood of x0
1, there exists a unique continuous function z(x1) =

(x2(x1), u(x1)) satisfying KKT, SSOS and LI at x2(x1) with u(x1) for (2) with x1, such

that z(x0
1) = (x0

2, u0) and x2(x1) is a locally unique local solution of (2) with x1.

This theorem states that for a fixed strategy x0
1 of the first level decision maker, if

SSOS and LI hold at a local optimal strategy x0
2 of the second level decision maker given

x0
1, then for each strategy x1 of the first level decision maker near x0

1 the second level

decision maker has a locally unique optimal strategy x2 near x0
2.

In other words, if the first level decision maker makes a decision x0
1 and x0

2 is the

local optimal strategy of the second level decision maker with respect to x0
1, it follows

from theorem 3 that there exists a x2(x1) defined in the neighborhood M of x0
1 such that

x2(x
0
1) = x0

2 and x2(x1) is the local optimal strategy of the second level decision maker with

respect to the strategy x1 in M . Hence, the set of semi-local solutions can be projected

into x1-space and we can define F (x1) = f1(x1, x2(x1)) for x1 ∈ M ; then the bilevel

problem locally reduce to the unconstrained minimization problem Minimizex1
F (x1).

4 Properties of a bilevel local solution to the QCBP

problem

Throughout the remainder of the paper we restrict our attention to QCBP problems for

which the following strong regularity condition is verified:

For each value of x1 ∈ S1, problem (2) has at least a local solution, and SSOSC and

LI conditions are satisfied at all local solutions.

Taking into account the previous results, we propose to consider the following definition

of induced region of the QCBP problem:

IR =

{

(x1, x2) ∈ S : x2 is a locally unique (isolated) local solution to min
y∈S(x1)

f2(x1, y)

}

as the feasible region of the QCBP problem. Next we prove some properties on the

geometry of IR.

157



Lemma 4. IR lies on the boundary of S.

Proof. Let (x1, x2) be a point of IR. Since x2 is an isolated local solution to (2) for x1 = x1,

there exists a neighborhood U around it such that x2 is the unique local solution, hence

f2(x1, x2) < f2(x1, x2) ∀x2 ∈ U .

If x2 belonged to the interior of S(x1) (which is a non-empty and compact polyhedron),

then there would exist x1
2, x2

2 ∈ U , and a λ ∈ (0, 1) such that x2 = λx1
2 +(1−λ)x2

2. Since

f2 is quasiconcave on S(x1) then f2(x1, x2) ≥ min{f2(x1, x1
2), f2(x1, x2

2)}, which would

contradict that x2 is an isolated local minimum.

Moreover, x2 is an extreme point of S(x1). Otherwise, there would be a non-empty

face Sj(x) of S(x1) such that x2 would belong to the relative interior of Sj(x). In the

same way as before, this fact contradicts that x2 is an isolated local minimum. As a

consequence, (x1, x2) belongs to the boundary of S.

It readily follows from lemma 4 that for each (x1, x2) ∈ IR, there exists a face Sj 6= S,

such that (x1, x2) ∈ ri Sj, where ri Sj denotes the relative interior of Sj.

Lemma 5. Let (x0
1, x2(x

0
1)) ∈ ri Sj ∩ IR. Then, Sj ∩ V = {(x0

1, x2(x
0
1))}, where V =

{(x0
1, x2) : x2 ∈ S(x0

1)}.

Proof. Suppose that there exists another point (x0
1, x

0
2) ∈ Sj ∩ V .

Since (x0
1, x2(x

0
1)) ∈ ri Sj and (x0

1, x
0
2) ∈ Sj, there exists a µ > 1 such that (x0

1, x2) =

µ(x0
1, x2(x

0
1)) + (1 − µ)(x0

1, x
0
2) ∈ Sj.

If we set λ = (µ−1)/µ, then 0 < λ < 1 and we can write (x0
1, x2(x

0
1)) = (1−λ)(x0

1, x2)+

λ(x0
1, x

0
2), contradicting that x2(x

0
1) is an extreme point of S(x0

1).

Lemma 6. Let Sj be a non-empty face of S and let (x0
1, x2(x

0
1)) ∈ IR. If (x0

1, x2(x
0
1)) ∈

ri Sj, then Sj ⊂ IR.

Proof. Let (y1, y2) ∈ Sj. Since (x0
1, x2(x

0
1)) ∈ ri Sj, there exists a neighborhood Ũ around

it such that U = Ũ ∩ aff Sj ⊂ ri Sj, where aff Sj denotes the affine hull of face Sj.

Since x2(x
0
1) is a locally unique local solution to (2) with x0

1, there exists a neighborhood

V1 around x0
1 and a unique function z(x1) = (x2(x1), u(x1)) such that x2(x1) is a locally

unique local solution to (2) with x1 ∈ V1. Then, by the continuity of z, there exists a

neighborhood V2 around x0
1 such that {(x1, x2(x1)) : x1 ∈ V2} ⊂ U.

Let us choose 0 < µ1 < 1 such that V3 = {x1 ∈ S1 : x1 = µy1 + (1 − µ)x0
1, 0 ≤ µ ≤

µ1} ⊂ V2. Then, {(x1, x2(x1)) : x1 ∈ V3} ⊂ U . Moreover, for all λ ∈ [0, 1), λ(y1, y2)+ (1−

λ)(x0
1, x2(x

0
1)) ∈ ri Sj. Thus, as a result of lemma 5, x2(x1) = µy2 + (1 − µ)x2(x

0
1) for all

x1 = µy1 + (1 − µ)x0
1 ∈ V3.

Hence, for all 0 ≤ µ ≤ µ1, (x1, x2) = µ(y1, y2)+(1−µ)(x0
1, x2(x

0
1)) ∈ IR. In particular,

(x1
1, x2(x

1
1)) = µ1(y1, y2) + (1− µ1)(x

0
1, x2(x

0
1)) ∈ ri Sj ∩ IR and, by repeating the process,
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we can construct from it a new point (x2
1, x2(x

2
1)) ∈ ri Sj ∩ IR, and so on. Therefore, we

approach the point (y1, y2) along the line segment between (y1, y2) and (x0
1, x2(x

0
1)), by

points belonging to IR. This implies that (y1, y2) ∈ IR.

Lemma 7. IR is piecewise linear.

Proof. It suffices to prove that IR =
⋃

j∈J Sj where J ⊂ {1, . . . , r} and S1, . . . , Sr are

the non-empty faces of S. Let (x1, x2(x1)) ∈ IR. Then, (x1, x2(x1)) ∈ ri Sj for some j ∈

{1, . . . , r} and, from lemma 6, Sj ⊂ IR. Hence, there exists a set of indices J ⊂ {1, . . . , r}

such that IR =
⋃

j∈J Sj.

Lemma 8. IR is conected.

Proof. It readily follows from the fact that S1 is connected and IR is the image of S1 by

the continuous map IR(·) : S1 → R
n such that x1 → (x1, x2(x1)).

As a consequence of previous lemmas, we can conclude that the feasible region of the

QCBP problem is comprised of the union of connected faces of S. Hence, the QCBP

problem can be equivalently formulated as:

Minimize f1(x1, x2)

subject to: (x1, x2) ∈ IR =
⋃

j∈J

Sj. (5)

This fact allows us to prove the main result of the paper regarding the local optimality

to the QCBP problem.

Theorem 9. There is an extreme point of S which is a local optimal solution to the

QCBP problem.

Proof. According to (5), the first level decision maker minimizes a continuous function

over a compact set, so that there exists a minimizing solution to the QCBP problem. Let

this be (x0
1, x2(x

0
1)).

Then, there exists at least one j ∈ J such that (x0
1, x2(x

0
1)) ∈ Sj, and (x0

1, x2(x
0
1)) is a

minimizing solution to the problem

Minimize f1(x1, x2)

subject to: (x1, x2) ∈ Sj, (6)

Since f1 is a quasiconcave and continuous function on Sj and Sj is a non-empty compact

polyhedron, there exists an extreme point of Sj (therefore an extreme point of S) which

is an optimal solution to problem (6), thus giving the same value of the objective function

as (x0
1, x2(x

0
1)). Therefore this extreme point of S is a local optimal solution to the QCBP

problem.
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5 Conclusions

In this paper, the assumption of uniqueness of the optimal solution to the second level

problem in the quasiconcave bilevel programming problem has been relaxed. Under as-

sumptions of regularity, we have proved that there exists an extreme point of the common

constraint region S which is a local optimal solution to the QCBP problem. This result

allow us to consider enumerative algorithms in order to solve the problem.
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