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Abstract

The aim of this paper is to extend a real-valued convex function f into a real-

valued convex function f̂ , defined on a convex subset of the closure of the domain of

f . When f is sequentially lower semi-continuous we study whether f̂ is sequentially

lower semi-continuous. The extended function f̂ is constructed by a sequential

process.
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1 Extensions by sequential processes

In this section we consider a topological space X, a nonempty subset C ⊂ X and a

function f : C → R. Our first objective is to construct an extension of f by a sequential

process whenever f satisfies some lower semi-continuity properties.

In the sequel we consider a subset S ⊂ XN which contains all constant sequences;

some of the notions introduced in this paper depend on the choice of S. We define the

subset

Ĉ := Ĉ(S, f) =
{
x ∈ X : ∃(xn) ∈ S ∩ CN, xn → x, lim inf f(xn) < +∞

}
.

For each point x ∈ X we define the subset

S(x, C,S) =
{
(xn) ∈ XN : (xn) ∈ S ∩ CN, xn → x

}

and we set Č := Č(S) = {x ∈ X : S(x, C,S) 6= ∅}.
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Obviously C ⊂ Ĉ ⊂ Č; for each x in Ĉ we define

f̂(x) = inf
(xn)∈S(x,C,S)

lim inf f(xn).

We first state some elementary properties of f̂ .

Proposition 1 f̂ is a function from Ĉ to [−∞, +∞[ such that f̂ |C ≤ f . Moreover

inf
C

f = inf
C

f̂ = inf
bC

f̂ ; in particular, f̂ is a function from Ĉ to R provided that f is lower

bounded.

Proof. By construction of Ĉ and f̂ it is obvious that f̂ never takes the value +∞

on Ĉ. By considering the constant sequences of C we get f̂ |C ≤ f . In particular we get

inf
C

f̂ ≤ inf
C

f . By the definition of f̂ we can conclude that f̂(x) ≥ inf
C

f for each x ∈ Ĉ.

Thus inf
C

f ≤ inf
bC

f̂ ≤ inf
C

f̂ which finishes the proof. �

We say that f is S−lower semi-continuous (S−l.s.c.) at x if for each (xn) ∈ S(x, C,S)

we have lim inf f(xn) ≥ f(x); f is said to be S−lower semi-continuous on C when f is

S−l.s.c. at each point of C. When S is the set of all sequences in X, S−lower semi-

continuity coincides with sequential lower semi-continuity (s.l.s.c.).

We conclude directly that f is S−l.s.c. at x ∈ C iff f(x) ≤ f̂(x); f is S−l.s.c. on C

iff f ≤ f̂ |C . We can assert:

Proposition 2 If f is S−l.s.c. on C then f̂ is a function from Ĉ to [−∞, +∞[ such

that f̂ |C = f .

We say that a function g from D to [−∞, +∞[ is S−l.s.c. on D relatively to C if (i)

C ⊂ D ⊂ Č, (ii) for each x ∈ D and (xn) ∈ S(x, C,S) we have lim inf g(xn) ≥ g(x).

Proposition 3 Assume that f is S−l.s.c. on C. Then f̂ is S−l.s.c. on Ĉ relatively to

C. Moreover, if g : D ⊃ C → [−∞, +∞[ is an extension of f which is S−l.s.c. on D

relatively to C then g |D∩ bC
≤ f̂ |D∩ bC

.

Proof. For each x ∈ Ĉ and each (xn) ∈ S(x, C,S) we have lim inf f̂(xn)=lim inf f(xn)

since f̂ |C = f . By the definition of f̂(x) we also get lim inf f(xn) ≥ f̂(x). Let g : D ⊃ C →

[−∞, +∞[ be an extension of f which is S−l.s.c. on D relatively to C and let x ∈ D∩ Ĉ.

For each (xn) ∈ S(x, C,S), we have g(x) ≤ lim inf g(xn) = lim inf f(xn). By definition of

f̂(x) we conclude that g(x) ≤ f̂(x). �

Corollary 4 If f is S−l.s.c. on C then f̂ is the greatest extension of f on Ĉ with values

in [−∞, +∞[ which is S−l.s.c. on Ĉ relatively to C.
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In particular, if f is s.l.s.c. on C then f̂ is s.l.s.c. on Ĉ relatively to C. In some

particular cases, for instance when X is a metric space, we can show that f̂ is s.l.s.c. on

Ĉ provided that f is s.l.s.c. on C. More generally:

Proposition 5 If f is s.l.s.c. on C and if each point of Ĉ admits a countable base of

neighbourhoods for the induced topology on Ĉ then f̂ is s.l.s.c. on Ĉ.

Proof. Let x ∈ Ĉ such that f̂(x) > −∞ and let (zn) be a sequence of points of Ĉ

which converges to x; we can consider a subsequence (xn) s.t. lim inf f̂(zn) = lim f̂(xn).

Let ε > 0 be given. For each integer n, we can consider a sequence (xn,p)p of points of

C which converges to xn such that (f(xn,p))p converges to a real number between f̂(xn)

and f̂(xn) + ε/2; without loss of generality we can assume that f(xn,p) ≤ f̂(xn) + ε for

all p. Consider now a decreasing countable base (Vn) of open neighborhoods of x (for the

induced topology on Ĉ). We set s(0) = r(0) = 0; for each integer n ≥ 1 there exists s(n)

s.t. s(n) > s(n− 1) and xm ∈ Vn whenever m ≥ s(n). Since xs(n) belongs to the open set

Vn and (xs(n),p)p converges to xs(n) there exists r(n) s.t. r(n) > r(n − 1) and xs(n),p ∈ Vn

for all p ≥ r(n). In particular, yn := xs(n),r(n) ∈ Vn for each integer n and thus (yn) is a

sequence of points of C which converges to x and therefore f̂(x) ≤ lim inf f(yn). We have

f(yn) ≤ f̂(xs(n)) + ε for each integer n and thus lim inf f(yn) ≤ lim inf f̂(xs(n)) + ε. We

conclude that f̂(x) ≤ lim inf f̂(zn) + ε. We conclude that f̂ is s.l.s.c. at x. �

We note that in the previous proposition we can conclude that f̂ is in fact l.s.c. on Ĉ.

Using a classical result of functional analysis we get:

Corollary 6 Let X be a normed linear space with a separable dual space and C be a

nonempty bounded subset of X. If f is weakly l.s.c. on C then f̂ is weakly l.s.c. on Ĉ.

A subset D of X is sequentially compact (resp., relatively sequentially compact) if

each sequence of points of D has a subsequence which converges to a point of D (resp., of

X). It is well known that a s.l.s.c. function has at least one minimizer on every nonempty

sequentially compact subset. In particular, under the assumptions of the previous propo-

sition, f̂ has at least a minimizer on Ĉ whenever this set is sequentially compact. It is

rather surprising that f̂ admits a minimizer on Ĉ when this set is sequentially compact

without knowing whether f̂ is s.l.s.c. on Ĉ or not.

Proposition 7 If f is s.l.s.c. on C and if C is relatively sequentially compact then f̂ is

a function from Ĉ to [−∞, +∞[ and inf
C

f = min
bC

f̂ = f̂(ĉ ) for some ĉ in Ĉ.

Proof. Consider a sequence (xn) ∈ C such that (f(xn)) converges to inf
C

f . There

exists a subsequence (cn) which converges to a point ĉ of X. Let us show that ĉ ∈ Ĉ : ĉ is
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limit of (cn) ⊂ C and (f(cn)) is upper-bounded since it converges to inf
C

f ∈ [−∞, +∞[.

Moreover lim inf f(cn) ≥ f̂(ĉ ) since f̂ is s.l.s.c. on Ĉ relatively to C and f̂ |C = f . We

get f̂(ĉ ) ≤ inf
C

f . Since we also have inf
C

f ≤ inf
bC

f̂ , the result follows. �

2 Convex extensions

Our objective is to construct a finite convex extension of a finite convex function f defined

on C; we will show under weak assumptions that the function f̂ defined on Ĉ is a solution

of this problem.

In the sequel we assume that X is a topological vector space. We also assume that S

is a subset of the set of sequences of X such that:

(A1) S contains the subset S0 of all sequences of X whose image is contained in some

line segment,

(A2) if (an) ∈ S then each of its subsequences belongs to S,

(A3) if (an) ∈ S and b ∈ X then (θan + (1 − θ)b) ∈ S for each θ ∈ [0, 1].

We say that S is stable by convex combinations when

(A4) if (an) ∈ S and (bn) ∈ S then (θan + (1 − θ)bn) ∈ S for each θ ∈ [0, 1].

We first note that S0 satisfies assumptions (A1)-(A3) but not (A4). The set of all

sequences of X satisfies (A1)-(A4). We keep in mind that the construction of f̂ and Ĉ

depends on the choice of S.

Recall that f : C ⊂ X → R is a quasi-convex function iff C is a convex subset and for

each (x, y, θ) ∈ C × C × [0, 1] we have f(θx + (1 − θ)y) ≤ max(f(x), f(y)).

We first give a sufficient condition for Ĉ to be a convex subset. We say that D ⊂ X

is convex relatively to C ⊂ X if C ⊂ D and for each (x, y, θ) ∈ D × C × [0, 1] we have

θx + (1 − θ)y ∈ D.

Proposition 8 If C is a convex subset and f is a quasi-convex function then the subset

Ĉ is convex relatively to C. If moreover S is stable by convex combinations then Ĉ is a

convex subset.

Proof. Given (x, y, θ) ∈ Ĉ × Ĉ × [0, 1] we can consider sequences (xn) and (yn) of C

belonging to S and converging respectively to x and y in such a way that (by (A2)) (f(xn))

and (f(yn)) are upper bounded. If assumption (A4) is not satisfied we will assume that

in fact y ∈ C and we will take yn = y. By convexity of C the points zn := θxn +(1− θ)yn

are in C and by quasi-convexity of f we have f(zn) ≤ max(f(xn), f(yn)). The point

z := θx+(1− θ)y is limit of the sequence (zn) of points of C which belongs to S (by (A3)

or (A4)) and (f(zn)) is upper bounded: θx + (1 − θ)y belongs to Ĉ. �
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We will show the convexity of f is preserved by f̂ when (A4) holds. We say that a

function f : D ⊂ X → R is convex relatively to C ⊂ X if D is convex relatively to C and

if for each (x, y, θ) ∈ D × C × [0, 1] we have f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

Proposition 9 Let f be a convex function from C to R. If f is a S−l.s.c. convex

function then f̂ is convex relatively to C. If S is stable by convex combinations then f̂ is

a convex function.

Proof. Let (x, θ) ∈ Ĉ × [0, 1] and let y ∈ C or, when (A4) holds, y ∈ Ĉ; the point

z := θx + (1 − θ)y is then in Ĉ. By definition of f̂ (and possible extraction), for any

L ∈
]
f̂(x), +∞

[
and M ∈

]
f̂(y), +∞

[
, there exist two sequences (xn) and (yn) of C

belonging to S which converge respectively to x and y and such that (f(xn)) and (f(yn))

converge respectively to some points of [−∞, +∞[ denoted by λ and µ which satisfy

f̂(x) ≤ λ ≤ L and f̂(y) ≤ µ ≤ M . We will take yn = y ∈ C and µ = f(y) when (A4)

does not hold; indeed, f(y) = f̂(y) by Proposition 2. Each point zn := θxn + (1 − θ)yn is

in C and satisfies f(zn) ≤ θf(xn)+ (1− θ)f(yn) by convexity of f ; obviously (zn) belongs

to S and converges to z and (f(zn)) is upper bounded. We get f̂(z) ≤ lim inf f(zn) ≤

θλ + (1 − θ)µ ≤ θL + (1 − θ)M . We conclude that f̂(z) ≤ θf̂(x) + (1 − θ)f̂(y). �

In fact, convexity of f also implies that f̂ has real values whenever f̂ is an extension

of f and C satisfies a regularity property defined below.

The subset of linearly accessible points from C is defined by lina(C) := {x∈X : ∃c∈C,

c 6= x, ]x, c[ ⊂ C}; we set lin(C) := C ∪ lina(C).

We introduce C̃ = C̃(S) :=
{
x ∈ X : ∃(xn) ∈ S ∩ CN, xn → x

}
. We say that the

convex subset C is S−semi-regular if C̃ = lin(C). Let us note that we always have

C̃ ⊂ cl(C) (the closure of C) and, by (A1), lin(C) ⊂ C̃.

Proposition 10 If f is a S−l.s.c. convex function from C to R and if C is S−semi-

regular then f̂ is a function from Ĉ to R.

Proof. We have to show that f̂ takes finite values on Ĉ. We can assume that

C is not reduced to a point. Let x ∈ C; since x ∈ lin(C) we can consider a point

ax ∈ C \ {x} such that ]ax, x[ ⊂ C. Then bx := 2−1x + 2−1ax ∈ C and, by Proposition 9,

f̂(bx) ≤ 2−1f̂(x) + 2−1f̂(ax). By Proposition 2 we get f̂(x) ≥ 2f(bx) − f(ax) > −∞. �

In many classical cases, the property of S−semi-regularity is satisfied.

Proposition 11 Let C be a nonempty convex subset of X.

(i) C is S0−semi-regular.

(ii) If X is a finite dimensional space then C is S−semi-regular.

(iii) If int(C) is nonempty then C is S−semi-regular and C̃ = cl(C).

(iv) If lin(C) is closed then C is S−semi-regular and C̃ = cl(C).
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Proof. (i) Let x ∈ C̃\C (if nonempty); x is limit of a sequence of points of C

given by xn = (1 − tn)x + tna where a ∈ X and tn ↓ 0 in [0, 1]. We remark that

]x, x0] =
⋃

n ]xn+1, xn]; by convexity [xn+1, xn] ⊂ C and thus ]x, x0] ⊂ C: x ∈ lina(C).

We have shown that C̃ ⊂ lin(C) which finishes the proof.

(ii) Without loss of generality we can assume that the affine hull of C is X; the result

follows from (iii).

(iii) It is well known that lin(C) = cl(C) (see [2, p. 59]); we use (iv).

(iv) Since C ⊂ lin(C) ⊂ C̃ ⊂ cl(C) ⊂ cl(lin(C)) the conclusion is obvious. �

In infinite dimensions, C can be a S−semi-regular convex subset with an empty in-

terior. Consider the space X = L2(]0, 1[) and C := {f ∈ X : f(x) > 0 a.e. x ∈ ]0, 1[ };

we have lin(C) = C̃ = D where D := {f ∈ X : f(x) ≥ 0 a.e. x ∈ ]0, 1[ } and we have

int(C) = int(D) = ∅.

We now introduce a stronger form of the S−semi-regularity condition in order to

transmit some properties of f to f̂ . We will say that a point c of the convex subset C

is a regular point of C if θc + (1 − θ)x ∈ C for any (θ, x) ∈ ]0, 1[ × lin(C); we denote

reg(C) the possibly empty subset of regular points of C. We say that the convex subset

C is S−regular if C is S−semi-regular (i.e. C̃ = lin(C)) and if there exists a point c ∈ C

such that θc + (1 − θ)x ∈ C for any (θ, x) ∈ ]0, 1[ × lin(C) (i.e. reg(C) 6= ∅).

Let us give an important case for which reg(C) 6= ∅.

Proposition 12 Let C be a convex subset of X. If icor(C) is nonempty then C has

regular points; moreover icor(C) ⊂ reg(C).

Proof. We can assume that 0 ∈ C and icor(C) is the core of C considered as a

subset of span(C). We have θ icor(C) + (1− θ)lin(C) ⊂ icor(C) for each θ ∈ ]0, 1[ by [2,

p. 10] and thus icor(C) ⊂ reg(C). �

In general , a convex subset may have regular points but an empty intrinsic core.

For example let C := {f ∈ L2(]0, 1[) : f(x) > 0 a.e. x ∈ ]0, 1[}. Then reg(C) = C, C is

S−regular but icor(C) = ∅ (see Proposition 13 (iv)).

The property of S−regularity is satisfied in many classical situations.

Proposition 13 Let C be a nonempty convex subset of X.

(i) If icor(C) is nonempty then C is S0−regular.

(ii) If X is a finite dimensional space then C is S−regular.

(iii) If int(C) is nonempty then C is S−regular.

(iv) If lin(C) is closed and icor(C) is nonempty then C is S−regular.

Proof. It follows by Propositions 11 and 12 (for (ii) see [2, p. 9]). �

In many cases, the function f̂ can be determined via an elementary calculus.
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Proposition 14 If f is a S−l.s.c. convex function from C to R and if C is S−regular

then for each (a, x) ∈ reg(C) × Ĉ and (tn) converging in ]0, 1[ to 0 then

f̂(x) = lim
n

f((1 − tn)x + tna).

Proof. The sequence (zn) defined by zn = (1− tn)x+ tna where (a, x, tn) ∈ reg(C)×

Ĉ × ]0, 1[ is in S by (A1). Moreover (zn) is a sequence of points of C; indeed, (a, x, tn) ∈

reg(C) × lin(C) × ]0, 1[ since x ∈ Ĉ ⊂ C̃ and C̃ = lin(C). The function f̂ is convex

on Ĉ relatively to C (Proposition 9) and is an extension of f (Proposition 2); it follows

that f(zn) = f̂(zn) ≤ (1 − tn)f̂(x) + tnf̂(a) and finally lim sup f(zn) ≤ f̂(x). We also

have lim inf f(zn) ≥ f̂(x) since (zn) ∈ S(x, C,S) and f̂ is S−l.s.c. on Ĉ relatively to C

(Proposition 3). �

Proposition 15 If f is a S−l.s.c. convex function from C to R and if C is S−regular

then f̂ is a S−l.s.c. convex function from Ĉ to R.

Proof. Let (x, y, θ) ∈ Ĉ × Ĉ × [0, 1] and a be given in the nonempty subset reg(C);

we denote z(θ) := θx + (1 − θ)y. Since C is S−regular, xn := (1 − n−1)x + n−1a and

yn := (1−n−1)y+n−1a belong to C (for n ≥ 1). We set zn(θ) := (1−n−1)z(θ)+n−1a (for

n ≥ 1); the sequence (zn(θ)) is in S. We have zn(θ) = θxn + (1 − θ)yn and thus (zn(θ))

is a sequence of points of C which converges to z(θ) ((xn) and (yn) converge respectively

to x and y). By convexity of f we can write f(zn(θ)) = f(θxn + (1 − θ)yn) ≤ θf(xn) +

(1− θ)f(yn). By Proposition 14, we have f̂(x) = limn f((1− n−1)x + n−1a) = limn f(xn)

and f̂(y) = limn f(yn). We deduce lim inf f(zn(θ)) ≤ θf̂(x) + (1 − θ)f̂(y) < +∞; we

can assert that z(θ) belongs to Ĉ and finally Ĉ is a convex subset. By Proposition 14,

f̂(z(θ)) = limn f((1−n−1)z(θ)+n−1a) = limn f(zn(θ)); thus f̂(z(θ)) ≤ θf̂(x)+(1−θ)f̂(y)

and we conclude f̂ is a convex function on Ĉ. By Proposition 10, f̂ has real values on Ĉ.

To show that f̂ is a S−l.s.c. function on Ĉ, consider (xn) in S∩ĈN which converges to a

point x ∈ Ĉ and such that lim inf f̂(xn) < +∞. Let a be a regular point of C and θ ∈ ]0, 1[;

we define (yn) by yn := (1− θ)xn + θa. We see that (yn) is in S ∩CN and converges to the

point y := (1− θ)x + θa. We have y ∈ C and (yn) ∈ S(y, C,S); since f is S−l.s.c. we get

lim inf f(yn) ≥ f(y). By convexity of f̂ , f(yn) = f̂(yn) ≤ (1−θ)f̂ (xn)+θf̂ (a). We obtain

f((1− θ)x+ θa) ≤ (1− θ) lim inf f̂(xn)+ θf(a). We first deduce lim inf f̂(xn) > −∞ since

f(y) is real. We conclude lim inf f((1 − n−1)x + n−1a) ≤ lim inf f̂(xn). By Proposition

14, lim f((1 − n−1)x + n−1a) = f̂(x) and thus lim inf f̂(xn) ≥ f̂(x). �

We first study the convex extensions of a convex function. We say that f is alge-

braically lower semi-continuous (a.l.s.c.) if f is S0−l.s.c. We say that C is algebraically

regular if C is S0−regular, i.e. reg(C) 6= ∅. In particular, convex subsets with nonempty

intrinsic core (relative algebraic interior) are algebraically regular.
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Theorem 16 If f is an a.l.s.c. convex function from C to R and C is algebraically

regular then f̂ is a convex extension from Ĉ to R. Moreover, if g is a function from

D ⊂ lin(C) to R which is a convex extension of f then D ⊂ Ĉ and f̂ |D ≤ g.

Proof. From the previous results f̂ is a convex function from Ĉ to R and f̂ |C = f . Let

g be a function from D ⊂ lin(C) to R which is a convex extension of f . Let x ∈ D; since

C is algebraically regular we can choose a ∈ reg(C). Then xn := (1 − n−1)x + n−1a ∈ C

for each n ≥ 1. The sequence (xn) converges to x and is in S0. The sequence (f(xn)) is

upper bounded : f(xn) = g(xn) ≤ (1−n−1)g(x) + n−1g(a). We conclude that x ∈ Ĉ. We

also have f̂(x) ≤ lim inf f(xn) ≤ lim inf[(1 − n−1)g(x) + n−1g(a)] ≤ g(x). �

When the convex subset C has a nonempty core (algebraic interior) and f is an a.l.s.c.

convex function from C to R, it is proved in [1] that the smallest convex extension Ef of

f exists on the whole space X but takes values in R ∪ {+∞}. We easily show Ef | bC
= f̂

and Ef |lin(C)\ bC
= +∞.

We now study the S−l.s.c. convex extensions of a S−l.s.c. convex function.

Theorem 17 If f is a S−l.s.c. convex function from C to R and C is S−regular then f̂

is a S−l.s.c. convex extension from Ĉ to R. Moreover, if g is a function from D ⊂ lin(C)

to R which is an a.l.s.c. convex extension of f then D ⊂ Ĉ and f̂ |D = g; thus g is S−l.s.c.

Proof. The first part is consequence of Propositions 2 and 15. Consider g : D ⊂

lin(C) → R an a.l.s.c. convex extension of f . We know from the previous theorem that

D ⊂ Ĉ and f̂ |D ≤ g. From Proposition 3 we have g ≤ f̂ |D and we conclude. �

We say that C is sequentially regular if C is S∞−regular where S∞ := XN. In particu-

lar, convex subsets with nonempty interior, convex subsets of finite dimensional spaces are

sequentially regular. We note that if S = S∞ we have C̃ =
{
x ∈ X : ∃(xn) ∈ CN, xn → x

}
;

the convex subset C is sequentially regular iff each limit of a convergent sequence of points

of C is in lin(C) and C has regular points.

Corollary 18 If f is a s.l.s.c. convex function from C to R and C is sequentially regular

then f̂ is a s.l.s.c. convex extension from Ĉ to R. Moreover, if g is a function from

D ⊂ lin(C) to R which is a s.l.s.c. convex extension of f then D ⊂ Ĉ and f̂ |D = g.
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