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Abstract

The aim of this paper is to extend a real-valued convex function f into a real-
valued convex function f, defined on a convex subset of the closure of the domain of

f- When f is sequentially lower semi-continuous we study whether fis sequentially

lower semi-continuous. The extended function f is constructed by a sequential

process.
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1 Extensions by sequential processes

In this section we consider a topological space X, a nonempty subset ¢' C X and a
function f : C' — R. Our first objective is to construct an extension of f by a sequential
process whenever f satisfies some lower semi-continuity properties.

In the sequel we consider a subset S C XY which contains all constant sequences;
some of the notions introduced in this paper depend on the choice of §. We define the

subset
C:=C(S.f)= {reX:3(x,) eSNCY, z, — 2, liminf f(z,) < +o0}.
For each point x € X we define the subset
S(z,C,8) = {(z,) € X" : (z,) eSNCY, z,, — z}

and we set C':= C(S) = {r € X : S(z,C,S) # 0}.
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Obviously C' C OccC ; for each = in C we define

f(x) = (mn)eisn(fc,C,S) liminf f(z,).

We first state some elementary properties of ]?

Proposition 1 f is a function from C to [—o0, +oo[ such that f‘c < f. Moreover
iréff = igf]?: inf j/’\, in particular, f 1s a function from CtoR provided that f is lower

3,
bounded.

PrOOF. By construction of C and ]?it is obvious that J?never takes the value +oo
on C. By considering the constant sequences of C' we get ]?|C < f. In particular we get

iréf f < irclf f. By the definition of fwe can conclude that f(x) > irclf f for each x € C.
Thus i%f f <inf fg iI(}f fwhich finishes the proof. U
c

We say that f is S—lower semi-continuous (S—L.s.c.) at x if for each (z,,) € S(z,C,S)
we have liminf f(z,) > f(x); f is said to be S—lower semi-continuous on C' when f is
S—ls.c. at each point of C. When § is the set of all sequences in X, S—lower semi-

continuity coincides with sequential lower semi-continuity (s.ls.c.).

~

We conclude directly that f is S—ls.c. at z € C'iff f(z) < f(z); f is S—l.s.c. on C
iff f < ]?‘C. We can assert:

Proposition 2 If f is S—lLs.c. on C then f is a function from C to [—00, +o0o[ such
that f\c = f.

We say that a function g from D to [—oo, +00o[ is S—Ls.c. on D relatively to C if (i)
C c DcC, (i) for each x € D and (z,) € S(z,C,S) we have liminf g(x,) > g(x).

Proposition 3 Assume that f is S—Il.s.c. on C. Then f is S—l.s.c. on C relatively to
C. Moreover, if g : D D C' — [—00,+00[ is an extension of f which is S—I.s.c. on D

relatively to C' then g pné < ]?‘Dma.

PROOF. Foreach z € C and each (z,,) € S(z, C,S) we have lim inf J/‘\(:cn) =liminf f(z,)
since ﬂc = f. By the definition of f(x) we also get liminf f(x,) > f(x) Letg: DD C —
[—00, +00[ be an extension of f which is S—1.s.c. on D relatively to C' and let x € DN C.
For each (z,) € S(z,C,S), we have ¢g(z) < liminf g(x,) = liminf f(x,). By definition of

~

f(x) we conclude that g(z) < f(x). ]

Corollary 4 If f is S—Il.s.c. on C then ]/C\z's the greatest extension of f on C with values

in [—00, +-00] which is S—l.s.c. on C relatively to C.
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In particular, if f is s.l.s.c. on C' then f is s.ls.c. on C relatively to C'. In some
particular cases, for instance when X is a metric space, we can show that fis s.l.s.c. on

C provided that f is s.l.s.c. on C. More generally:

Proposition 5 If f is s.l.s.c. on C and if each point of C admits a countable base of

netghbourhoods for the induced topology on C then f is s.l.s.c. on C.

PROOF. Let z € C such that f(x) > —oo and let (z,) be a sequence of points of C
which converges to z; we can consider a subsequence (z,) s.t. liminf f(zn) = lim f(azn)
Let € > 0 be given. For each integer n, we can consider a sequence (), of points of

~

C which converges to z,, such that (f(z,,;)), converges to a real number between f(z,)
and f(wn) + €/2; without loss of generality we can assume that f(z,,) < f(wn) + € for
all p. Consider now a decreasing countable base (V},) of open neighborhoods of = (for the
induced topology on C). We set s(0) = r(0) = 0; for each integer n > 1 there exists s(n)
s.t. s(n) > s(n—1) and z,, € V;, whenever m > s(n). Since x4, belongs to the open set
V, and (4(n)p)p converges to x4, there exists r(n) s.t. r(n) > r(n —1) and x4, € Va
for all p > r(n). In particular, y, := Zsn)rm) € Vi for each integer n and thus (y,) is a
sequence of points of C' which converges to z and therefore f(z) < liminf f(y,). We have

Jf(Wn) < f(@sm)) + € for each integer n and thus liminf f(y,) < liminf f(zqm)) +e We
conclude that f(x) < lim inf f(zn) +e. We conclude that f is s.l.s.c. at z. O]

We note that in the previous proposition we can conclude that fis in fact Ls.c. on C.

Using a classical result of functional analysis we get:

Corollary 6 Let X be a normed linear space with a separable dual space and C be a

nonempty bounded subset of X. If f is weakly l.s.c. on C' then f 1s weakly l.s.c. on C.

A subset D of X is sequentially compact (resp., relatively sequentially compact) if
each sequence of points of D has a subsequence which converges to a point of D (resp., of
X). It is well known that a s.l.s.c. function has at least one minimizer on every nonempty
sequentially compact subset. In particular, under the assumptions of the previous propo-
sition, fhas at least a minimizer on C whenever this set is sequentially compact. It is
rather surprising that f admits a minimizer on C when this set is sequentially compact

without knowing whether J?is s.ls.c. on C or not.

Proposition 7 If f is s.l.s.c. on C and if C 1is relatively sequentially compact then f 15

a function from C to [—00, +00[ and iréff = min F= f(/c\) for some ¢ in C.
c

PrOOF. Consider a sequence (z,) € C such that (f(z,)) converges to irclf f. There

exists a subsequence (¢, ) which converges to a point ¢ of X. Let us show that ¢ € C: Cis
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limit of (¢,,) € C and (f(¢,)) is upper-bounded since it converges to iréf f € [—o0,+o0].

Moreover liminf f(c,) > f(/c\) since fis sls.c. on C relatively to C' and ﬂc = f. We
get f(5> < igf f. Since we also have iréf f <inf 7. the result follows. O
c

2 Convex extensions

Our objective is to construct a finite convex extension of a finite convex function f defined
on C'; we will show under weak assumptions that the function fdeﬁned on C is a solution
of this problem.

In the sequel we assume that X is a topological vector space. We also assume that S
is a subset of the set of sequences of X such that:

(A1) S contains the subset Sy of all sequences of X whose image is contained in some
line segment,

(A2) if (a,) € S then each of its subsequences belongs to S,

(A3) if (a,) € S and b € X then (fa, + (1 — 0)b) € S for each 6 € [0, 1].

We say that § is stable by convex combinations when

(A4) if (a,) € S and (b,) € S then (fa, + (1 —0)b,) € S for each 6§ € [0, 1].

We first note that Sy satisfies assumptions (A1)-(A3) but not (A4). The set of all
sequences of X satisfies (A1)-(A4). We keep in mind that the construction of Fand C
depends on the choice of S.

Recall that f: C' C X — R is a quasi-convex function iff C' is a convex subset and for
each (z,y,0) € C x C x [0,1] we have f(0z + (1 —0)y) < max(f(x), f(y)).

We first give a sufficient condition for C to be a convex subset. We say that D C X
is convex relatively to C C X if C' C D and for each (z,y,0) € D x C x [0, 1] we have
Or+ (1 —6)y € D.

Proposition 8 If C' is a convex subset and f is a quasi-convex function then the subset
C is convex relatively to C. If moreover § is stable by convexr combinations then Cisa

convex subset.

PROOF. Given (z,y,60) € C x C x [0,1] we can consider sequences (z,,) and (y,) of C
belonging to S and converging respectively to x and y in such a way that (by (A2)) (f(x,))
and (f(y,)) are upper bounded. If assumption (A4) is not satisfied we will assume that
in fact y € C' and we will take y,, = y. By convexity of C' the points z, := 0z, + (1 —0)y,
are in C' and by quasi-convexity of f we have f(z,) < max(f(z,),f(yn)). The point
z = 0x+ (1 —0)y is limit of the sequence (z,) of points of C' which belongs to S (by (A3)
or (A4)) and (f(z,)) is upper bounded: 6z + (1 — )y belongs to C. O

108



We will show the convexity of f is preserved by fwhen (A4) holds. We say that a
function f: D C X — R is convex relatively to C C X if D is convex relatively to C' and
if for each (x,y,0) € D x C' x [0,1] we have f(0x + (1 —0)y) < 0f(z) + (1 —0)f(y).

Proposition 9 Let f be a conver function from C to R. If f is a S—l.s.c. convex
function then ]/C\ 1s convex relatively to C. If S is stable by convex combinations then ]/C\ 15

a convex function.

PROOF. Let (z,6) € C x [0,1] and let y € C or, when (A4) holds, y € C’ the point
z := Ox + (1 — 0)y is then in C. By definition of f (and possible extraction), for any
L e }f(w),+oo[ and M € ]f(y),+oo [, there exist two sequences (z,) and (y,) of C
belonging to & which converge respectively to z and y and such that (f(z,)) and (f(y,))
converge respectively to some points of [—oo, +00| denoted by A and p which satisfy
J?(:U) < A< L and J?(y) < pu < M. We will take y, =y € C and p = f(y) when (A4)
does not hold; indeed, f(y) = f( ) by Proposition 2. Each point z, := 0z, + (1 — 0)y, is
in C and satisfies f(z,) < 0f(z,)+ (1—0)f(y,) by convexity of f; obviously (z,) belongs
to S and converges to z and (f(z,)) is upper bounded. We get f( ) < liminf f(z,) <
OA+ (1 — 0)pu < OL + (1 — 0)M. We conclude that f(2) < 0f(z) + (1 — 0)f(y). O

In fact, convexity of f also implies that fhas real values whenever fis an extension
of f and C satisfies a regularity property defined below.

The subset of linearly accessible points from C'is defined by lina(C'):= {xr€ X : JceC,
c#x,lx,c] C C}; we set lin(C) := C Ulina(C).

We introduce C = C(8) = {reX:3(x,) €eSNCY, x, — x}. We say that the
convex subset C' is S—semi-regular if C = lin(C). Let us note that we always have
C C cl(C) (the closure of C) and, by (A1), lin(C) c C.

Proposition 10 If f is a S—Il.s.c. convex function from C to R and if C is S—semi-

reqular then f 1s a function from C toR.

Proor. We have to show that f takes finite values on C. We can assume that
C' is not reduced to a point. Let z € C; since x € lin(C) we can consider a point
a; € C'\ {x} such that Ja,,z[ C C. Then b, := 27 'z + 27'a, € C and, by Proposition 9,
f(bw) < 2*1]/“\(26) + 2*1]?(%). By Proposition 2 we get f(x) > 2f(b) — flay) > —o0. O

In many classical cases, the property of S—semi-regularity is satisfied.

Proposition 11 Let C' be a nonempty conver subset of X.
(i) C is Sy—semi-regular.
(i) If X is a finite dimensional space then C' is S—semi-reqular.
(iii) If int(C) is nonempty then C is S—semi-regular and C = ¢l(C).
(iv) If lin(C) is closed then C is S—semi-reqular and C = cl(C).
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PROOF. (i) Let z € C\C (if nonempty);  is limit of a sequence of points of C'
given by =, = (1 — t,)x + t,a where a € X and ¢, | 0 in [0,1]. We remark that
|z, z0] = U, |Tnt1, xn]; by convexity [z,41,2,] C C and thus |z, z¢] C C: = € lina(C).
We have shown that C' C lin(C') which finishes the proof.

(ii) Without loss of generality we can assume that the affine hull of C'is X; the result
follows from (iii).

(iii) It is well known that lin(C') = cl(C) (see [2, p. 59]); we use (iv).

(iv) Since C C lin(C) € C C ¢l(C) C cl(lin(C)) the conclusion is obvious. O

In infinite dimensions, C' can be a S—semi-regular convex subset with an empty in-
terior. Consider the space X = L?(]0,1[) and C := {f € X : f(x) > 0 a.e.  €]0,1[};
we have lin(C) = C = D where D := {f € X : f(z) >0a.e. z €]0,1[} and we have
int(C) = int(D) = 0.

We now introduce a stronger form of the S—semi-regularity condition in order to
transmit some properties of f to J? We will say that a point ¢ of the convex subset C'
is a regular point of C if Oc + (1 — )z € C for any (0, z) € ]0,1[ x lin(C); we denote
reg(C') the possibly empty subset of regular points of C. We say that the convex subset
C'is S—regular if C' is S—semi-regular (i.e. C' = lin(C)) and if there exists a point ¢ € C
such that fc + (1 — 0)xz € C for any (0,x) € ]0,1[ x lin(C) (i.e. reg(C) # 0).

Let us give an important case for which reg(C') # .

Proposition 12 Let C be a conver subset of X. If icor(C') is nonempty then C has

reqular points; moreover icor(C) C reg(C).

PROOF. We can assume that 0 € C and icor(C) is the core of C considered as a
subset of span(C'). We have 0 icor(C) + (1 — 0)lin(C) C icor(C) for each 0 € |0, 1] by [2,
p. 10] and thus icor(C) C reg(C). O

In general , a convex subset may have regular points but an empty intrinsic core.
For example let C := {f € L?(]0,1]) : f(x) >0 a.e. x €]0,1[}. Then reg(C) = C, C'is
S—regular but icor(C) = ) (see Proposition 13 (iv)).

The property of S—regularity is satisfied in many classical situations.

Proposition 13 Let C' be a nonempty convex subset of X.
(i) If icor(C') is nonempty then C' is Sy—regular.
(i) If X is a finite dimensional space then C' is S—regular.
(i) If int(C') is nonempty then C' is S—regular.
() If lin(C') is closed and icor(C) is nonempty then C is S—regular.

PROOF. It follows by Propositions 11 and 12 (for (ii) see [2, p. 9]). O

In many cases, the function ]?can be determined via an elementary calculus.
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Proposition 14 If f is a S—I.s.c. convex function from C to R and if C is S—reqular
then for each (a,x) € reg(C) x C and (tn) converging in ]0,1[ to O then

fla) = lim f((1 — ta)z + t,a).

PROOF. The sequence (z,) defined by z, = (1 —t,)z+t,a where (a,z,t,) € reg(C) X
C x]0,1[is in S by (A1). Moreover (z,) is a sequence of points of C; indeed, (a,,t,) €
reg(C) x lin(C) x )0,1] since # € C € C and C = lin(C). The function f is convex
on C relatively to C' (Proposition 9) and is an extension of f (Proposition 2): it follows
that f(z,) = A(zn) < (1- tn)f(x) + t,f(a) and finally limsup f(z,) < f(az) We also
have liminf f(z,) > ]/C\(x) since (z,) € S(z,C,S) and fis S—ls.c. on C relatively to C
(Proposition 3). O

Proposition 15 If f is a S—I.s.c. convex function from C to R and if C is S—reqular

then ]? s a S—I.s.c. convex function from C toR.

PROOF. Let (z,y,0) € C x C x [0,1] and a be given in the nonempty subset reg(C);
we denote z(0) := 0z + (1 — 0)y. Since C is S—regular, z, := (1 —n~')z + n~la and
Yn = (1—=n"Y)y+n~ta belong to C (for n > 1). We set 2,(6) := (1—n""')2(0) +n"'a (for
n > 1); the sequence (z,(0)) is in S. We have z,(0) = 0z, + (1 — 0)y,, and thus (z,(0))
is a sequence of points of C' which converges to z(#) ((z,) and (y,) converge respectively
to x and y). By convexity of f we can write f(2,(0)) = f(0z, + (1 — 0)y,) < 0f(x,) +
(1 —6)f(yn). By Proposition 14, we have f(x) = lim, f((1 —=n"YHz +n"ta) = lim, f(x,)

and f(y) = lim, f(y,). We deduce liminf f(2,(0)) < 0f(x) + (1 — 0)f(y) < +oo; we
can assert that z(#) belongs to C and finally C is a convex subset. By Proposition 14,

~ ~ ~

F(2(6)) = limy, £((1=n"")2(6) +n"'a) = lim,, f(2,(6)); thus F(2(0)) < 0F(x)+(1-0)F(y)
and we conclude ]/C\is a convex function on C. By Proposition 10, ]/C\has real values on C.

To show that fis a S—l.s.c. function on 6, consider (z,) in SNCN which converges to a
point z € C and such that lim inf f(:cn) < +00. Let a be aregular point of C' and 6 € |0, 1];
we define (y,,) by y, := (1 —0)x, +0a. We see that (y,) is in SNCY and converges to the
point y := (1 —0)x + fa. We have y € C' and (y,,) € S(y,C,S); since f is S—l.s.c. we get
liminf f(y,) > f(y). By convexity of 7, flyn) = f(yn) < (1 —H)f(xn) +0f(a). We obtain

f(1=0)x+0a) < (1—0)liminf f(x,)+0f(a). We first deduce liminf f(z,) > —oo since

f(y) is real. We conclude liminf f((1 — n~ )z 4+ n~'a) < liminf f(z,). By Proposition
14, lim f((1 —n Yz +n"ta) = ]/C\(x) and thus lim inf f(xn) > ]/C\(x) O

We first study the convex extensions of a convex function. We say that f is alge-
braically lower semi-continuous (a.l.s.c.) if f is So—l.s.c. We say that C is algebraically
regular if C'is Sy—regular, i.e. reg(C') # (. In particular, convex subsets with nonempty

intrinsic core (relative algebraic interior) are algebraically regular.
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Theorem 16 If f is an a.l.s.c. convex function from C to R and C' is algebraically
reqular then f 1S a convex extension from C to R. Moreover, if g is a function from

D C lin(C) to R which is a convex extension of f then D C C and ]?‘D <g.

PROOF. From the previous results fis a convex function from C to R and f|c = f. Let
g be a function from D C lin(C') to R which is a convex extension of f. Let x € D; since
C is algebraically regular we can choose a € reg(C). Then z, ;== (1 —n" Nz +n"la e C
for each n > 1. The sequence (z,) converges to x and is in Syp. The sequence (f(x,)) is
upper bounded : f(z,) = g(z,) < (1 —n"Y)g(z) + n'g(a). We conclude that z € C. We
also have f(z) < liminf f(z,) < liminf[(1 — n~)g(z) + n~'g(a)] < g(x). O

When the convex subset C' has a nonempty core (algebraic interior) and f is an a.l.s.c.
convex function from C' to R, it is proved in [1] that the smallest convex extension Ef of
f exists on the whole space X but takes values in R U {+o00}. We easily show F f = ]?
and E'f in(C\G = 00

We now study the S—l.s.c. convex extensions of a S—l.s.c. convex function.

Theorem 17 If f is a S—I.s.c. convex function from C' to R and C is S—reqular then f
1s a S—1.s.c. conver extension from C toR. Moreover, if g is a function from D C lin(C)

to R which is an a.l.s.c. convex extension of f then D C C and ]?|D =g; thus g is S—l.s.c.

ProOOF. The first part is consequence of Propositions 2 and 15. Consider g : D C
lin(C) — R an a.l.s.c. convex extension of f. We know from the previous theorem that

D c C and f‘D < g. From Proposition 3 we have g < f‘D and we conclude. U

We say that C'is sequentially reqular if C'is Sy —regular where S, := XY, In particu-
lar, convex subsets with nonempty interior, convex subsets of finite dimensional spaces are
sequentially regular. We note that if § = S, we have C = {x € X :3J(x,) eC x, — x};
the convex subset C'is sequentially regular iff each limit of a convergent sequence of points

of C'is in lin(C) and C has regular points.

Corollary 18 If f is a s.l.s.c. convex function from C to R and C' is sequentially reqular
then ]? is a s.l.s.c. convex extension from C to R. Moreover, if g is a function from

D C lin(C) to R which is a s.l.s.c. convex extension of f then D C C and f|D =g.
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