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Abstract

New stratigraphic modellings (sedimentary basins formation), developed by the

Institut Français du Pétrole, lead to mathematical questions difficult to answer.

Such models describe erosion-sedimentation processes and take into account a lim-

ited weathering via non standard unilateral problems. Various theoretical results

and research procedures are presented for solving the monolithologic column case.
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1 Introduction

The geological problem proposed by R. Masson (I.F.P.) deals with the erosion-sedimen-

tation phenomenon in sedimentary basins [4]. The model is based on three main assump-

tions, given below:

Claim 1: The model is weather-limited. It means that −∂th, the erosion speed if one

denotes by h the height of sediments, has to be smaller than a given function E, a.e. in

the base of the basin Ω (see Fig.1), at every moment.

Claim 2: Non standard unilateral constraints of instantly control type are considered

on outflow boundary, say Γs (see condition (4)).

Claim 3: In order to reconcile these two claims with a conservative formulation, a third

hypothesis is needed. Therefore, one assumes that the flow of matter is proportional to

∇h and one states the following equation for the mass balance of the sediment:

∂th − div(λ∇h) = 0 in ]0, T [×Ω,

where λ is a suitable multiplier, a priori in [0, 1].
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2 The mathematical model

Let us consider Ξ a sedimentary basin, Ω ⊂ RN (N = 1, 2) its base and Q =]0, T [×Ω.

Let us denote by Γe and Γs two parts of the boundary such that ∂Ω = Γe ∪ Γs and by h

the sediment’s height (i.e. the topography).

Figure 1: Sedimentary basin

Then, the mathematical modelling of the problem writes as follows:

∂th − div(λ∇h) = 0 in Q. (1)

∂th ≥ −E in Q, where E(t, x) ≥ 0, (2)

−λ∂nh = fe on ]0, T [×Γe, (3)

λ∂nh + fs ≥ 0 ; ∂th + E ≥ 0 ;

(λ∂nh + fs)(∂th + E) = 0

]

on ]0, T [×Γs, (4)

h(0, .) = h0 in Ω, (5)

λ ∈ [a, 1], a ≥ 0. (6)

Finally, let us denote by Λad the admissible set:

Λad = {λ ∈ L∞(]0, T [×Ω) / ∃ h, (λ, h) satisfying (1) to (6)}.

Let us remark that if fe = 0, fs ≥ 0 with E = 0 and h = h0 = c, any λ is solution.

Therefore, one needs some more assumptions in order to characterize λ. Two models are
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proposed:

in the first one, it is assumed that λ has to be maximal in Λad, i.e.

∃ λ ∈ Λad, ∀λ ∈ Λad, λ ≤ λ (7)

alternatively, in the second one, non standard unilateral constraints are imposed:

(1 − λ)(∂th + E) = 0 in Q. (8)

3 Some concrete examples for an heuristic approach

• Let us consider that E = 0, f = 0 and assume that h0 = c > 0.

In this case, one can remark that for any bounded measurable λ satisfying (6), (λ, h0)

is a solution of (1) to (6).

On the one hand, (8) is satisfied, but the solution is not unique.

On the other hand, λ ≡ 1 is the unique solution of (7).

So, one concludes that (8) is not well-posed.

• Let us consider the one-dimensional case Ω =]0, 1[ and assume that E = 0, f = 0 and

that h0 =
n−1
∑

i=1

αiI[ai−1,ai[ + αnI[an−1,an] is a non negative step function.

One remarks that for any continuous λ satisfying (6) and such that λ(ai) = 0 (i =

1, .., n − 1), (λ, h0) is a solution of (1) to (6).

One the one hand, a solution of (8) exists, but it is not unique.

On the other hand, it is obvious that if one has a solution (λ, h) of (7), then λ = 1.

Therefore, the continuity of the derivation operator in D′(Ω) leads to: ∆h0 ≥ 0 in D′(Ω).

Since this last assertion is impossible, (7) has no solution.

Let us point out that, under the assumption E = c0 > 0, the existence of a solution of

(8) is an open problem.

• We are now intersted by the travelling waves which are solutions of the one-dimension

model (1) to (6).

1) Let us consider that Ω =]0, x1[, Γe = {0}, Γs = {x1} and assume that E(ξ) =

EI[0,ξ0[ + E∗
I[ξ

0
,+∞[ where ξ = µx + t (µ > 0), 0 < ξ0 < ξ1 and E∗ > E ≥ 0.

Therefore, plugging h(t, x) = h(ξ) and λ(t, x) = λ(ξ) into (1) to (6) with (ξ1−ξ0)/µ
2+

E/E∗ ≤ 1 leads to:

for ξ in ]0, ξ0[ for ξ in ]ξ0, ξ1[

h(t, x) = µ2E e
−

ξ0

µ2
[1 − e

ξ

µ2
] + h0(0) E∗(ξ0 − ξ) + h0(0) − µ2E[1 − e

−
ξ0

µ2
]

λ(t, x) = 1
ξ − ξ0

µ2
+

E

E∗
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2) The same explicit construction with ξ = x + µt, leads to

for ξ in ]0, ξ0[ for ξ in ]ξ0, ξ1[

h(t, x) =
E

µ2
e−µξ0 [1 − eµξ] + h0(0)

E∗

µ
(ξ0 − ξ) + h0(0) −

E

µ2
[1 − e−µξ0 ]

λ(t, x) = 1 µ(ξ − ξ0) +
E

E∗

where ξ1 = min{ξ0 +
µ

E∗
(h0(0) −

E

µ2
, ξ0 +

E∗ − E

µE∗
}.

3) Let us now give some graphics of the exact solutions proposed by formula 1) or 2)

when Ω = ]0, 1[ , Γe = {x = 0} and Γs = {x = 1} .

i) Assume that h0 = h0 (0) = 4, E = µ = 1, E∗ = 2, ξ = x + t, ξ0 = 1, ξ1 =

1, 5 and E (x, t) = χ{0≤x+t<1} + 2χ{1≤x+t≤1,5} Then, for T = 0, 5, one has the following

figures:

ii) Assume that h0 = h0 (0) = 2, E = 0, 0001, µ = 0, 01, E∗ = 0, 0005, E∗∗ =

0, 001, ξ = x + 1
100

t, ξ0 = 1, ξ1 = 21, ξ2 = 30, and E (x, t) = E χ{0≤x+ t

100
<1} +

E∗ χ{1≤x+ t

100
<21}+E∗∗ χ{21≤x+ t

100
<30}. Then, for T = 2900, one has the following figures:
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iii) Assume that h0 = h0 (0) = 100, E = 0, µ = 0, 001, E∗ = 0, 0001, ξ = x + 1
1000

t,

ξ0 = 1, ξ1 = 1001 and E (x, t) = 0, 0001 χ
{1≤x+

1

1000
t≤1001}

. Then, for T = 106, one has

the following figures:
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4 Toward the definition of a strong solution

As mentioned previously, the global problem is an ill-posed problem. Nevertheless, thanks

to the work of G. Duvaut & J. L. Lions [3] concerning the ”thermical enslavement”, some

aspects are already studied and some mathematical tools are available.

Let us first consider, for a fixed smooth λ, the non degenerated and non weather-

limited case.

Definition 1 A strong solution of [1 and of 3 to 6] is a couple (λ, h) of L∞(]0, T [×Ω)×

L2(0, T ; H1(Ω)) such that:

∂th ∈ {u ∈ L2(0, T ; H1(Ω)), u + E ≥ 0 on Γs}

0 ≤ λ ≤ 1 ; h(0) = h0 a.e. in Ω

and ∀v ∈ H1(Ω), t a.e in ]0, T [,
∫

Ω

∂th (v − ∂th) dx +

∫

Ω

λ∇h∇(v − ∂th) dx +

∫

Γ

f (v − ∂th) dσ +

∫

Γs

χR+(v + E) dσ ≥ 0

where χR+(x) = 0 if x ≥ 0 and +∞ if x < 0.

Proposition 1 Assume that a > 0 in (6), that λ, E and fs are regular functions and

that

∃g ∈ L2(Ω), g ≥ 0, with

∀v ∈ H1(Ω),

∫

Ω

(g − E(0))v dx +

∫

Ω

λ(0)∇h0 ∇v dx +

∫

Γ

f(0) v dσ = 0.

Then there exists a unique h such that (λ, h) is a strong solution to [1 − 3 − 4 − 5 − 6].

We give in the sequel only the steps of the proof.

First step. Thanks to a classical Galerkin method, based on a fixed point argument (see

G. Duvaut & J. L. Lions [3] and J. L. Lions et al [5, 6, 8, 7] for example), one has:

for any positive ε and η, there exists a unique hε
η in L2(0, T ; H1(Ω)) such that

∂th
ε
η ∈ L2(0, T ; H1(Ω)) , ∂2

t h
ε
η ∈ L2(0, T ; L2(Ω))

and

hε
η(0) = h0, ∂th

ε
η(0) = g − E(0),

satisfying for any v in H1(Ω), t a.e in ]0, T [

ε
∫

Ω
∂2

t h
ε
η v dx +

∫

Ω
∂th

ε
η v dx +

∫

Ω
λ∇hε

η ∇v dx

+
∫

Γ
f v dσ −

∫

Γs

βη(∂th
ε
η + E)v dσ = 0.
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where βη(x) = 1
η
[x(x2 + 2)I[−1,0] − xI]−∞,−1[].

Second step. Using a priori estimates (mainly obtained in the Galerkin scheme of the

above equation and conserved thanks to the lower-semi-continuity of the norms for the

weak convergence) and sub-sequences extractions, one gets:

there exists a unique hη in L2(0, T ; H1(Ω)) with

∂thη ∈ L2(0, T ; H1(Ω)) and ∂2
t hη ∈ L2(0, T ; H1(Ω)′)

such that hη(0) = h0 and ∀v ∈ H1(Ω), t a.e in ]0, T [

∫

Ω

∂thη v dx +

∫

Ω

λ∇hη ∇v dx +

∫

Γ

f v dσ −

∫

Γs

βη(∂thη + E)v dσ = 0.

Third step. In order to prove the existence of a solution, one has to pass to the limit

in the above equation when η tends toward 0. Once again, a priori estimates are needed

and the limit is obtained thanks to a technique proposed by G. Duvaut & J. L. Lions in

[3]. The main difference is the use of a weight (depending on a and ||∂tλ||∞) in the time

integration since the bilinear form is time depending.

Last step. The uniqueness is obvious by monotonicity arguments.

Furthermore, thanks to the classical maximum principle, one has the following exis-

tence-uniqueness result of the strong solution of the non-degenerated weather-limited

problem:

Proposition 2 Assume moreover that λ, E and f fulfil

div(∂tλ∇h) + ∂tE − div(λ(x, t)∇E) ≥ 0 in ]0, T [×Ω,

∂tf − ∂tλ∇h.−→n + λ∇E.−→n ≥ 0 on ]0, T [×Γe,

(9)

then h satisfies the weather-limited condition: ∂th + E ≥ 0 in ]0, T [×Ω.

Let us note that such a condition is satisfied if one assumes that E(t, x) = E0, f(t, x) =

f(x) and λ(t, x) = λ(x) (see S.N. Antontsev et al [1]).

It is important to remark here the first order hyperbolic aspect of problem (“travelling

waves” examples.

5 Final remarks

First of all, we cann conclude that the problem of the existence and the uniqueness of the

solution of (7) or (8) is still open. In fact, without any further assumption on the physical

data, theses problems are ill-posed.
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Concerning the forthcoming work, let us point out that the real industrial problem

does not consist in finding (λ, h), but in solving the inverse problem: knowing h (the

topography ), is it possible to obtain a unique sui generis λ, solution of (7) or (8) ?

One may find in [2] some details of the proofs.
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