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Monograf́ıas del Semin. Matem. Garćıa de Galdeano. 27: 65–71, (2003).

Abstract

Resource sharing systems are used to model situations where several servers must

complete jobs using some resources which must be shared with other servers. This

kind of situations appear, for example, in computer and communications networks.

In this paper we consider a Markovian class of processes of this type, loss networks,

where the servers are communication stations arranged along a line which can be

identified with Z. For these processes, the uniqueness of equilibrium measure is

obtained and, as a consequence, the ergodicity of loss networks with calls of finite

length is proved.
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1 Introduction

Loss networks play an essential role in modeling and analysing complex systems as tele-

phone networks, database structures or communications systems (Kelly [8]). Loss net-

works can be seen as K stations arranged along a cable. These stations must transmit

calls along the cable. Each call requests a fraction C−1 of the cable between the origin

station and the destination station of the call. The call is rejected, ”lost”, if past any

point between both stations C calls are in progress. Calls arrive (from outside) to any

station according to a Poisson process, independent for each station. Also, the completion

times of each call are exponential times. All exponential times are taken independent.

A description of the invariant measure can be seen in Kelly [7]. When the number of

stations is countable and the length of each call (distance between origin and destination

stations) is bounded, loss networks can be seen as resource sharing systems ([2], [4], [6]).

Our purpose in this work is to study the ergodicity of one-dimensional loss networks

(stations arranged on Z). The main difficult to analyse the ergodicity of these processes is
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that they are not attractive and, then, the usual stochastic comparison techniques through

couplings cannot be used.

As it is said before all arrivals and completion times of the calls are taken independent,

although the completion time of a call can depend on its length (bounded), but not on

the origin and destination stations.

In this work we prove the ergodicity of one-dimensional loss networks. To get the

ergodicity we first prove (Theorem 1) the existence of reversible measure (then invariant)

for the loss network and, using a result of López [10], the uniqueness of that measure

is obtained, under a mild positivity condition. Then (Theorem 3), using entropy argu-

ments, the equivalence between invariant and reversible measures is proved and, finally

the ergodicity of one-dimensional loss networks is obtained (Theorem 4).

2 Main results

Loss networks can be seen as Interacting Particle Systems on X = W Z, with W =

{0, 1, . . . , C}k, where the sites x ∈ Z denote the stations and the state of the station

x in the configuration η ∈ X (denoted by η(x)) will be a k-tuple whose ith component

(denoted by η(x, i)) is the number of calls in progress from the station x to the station x+i

in the configuration η. Notations and basic results on Interacting Particle Systems can

be seen in Liggett [10]. The evolution of the process is the following: each station x ∈ Z,

tries to call the station x + i (i = 1, . . . , k) after an exponential time with parameter λi.

The call is rejected (and lost) if past any point x, . . . , x + i there are already C calls in

progress. If the call is accepted, it lasts an exponential time with parameter δi. All the

exponential times are taken independent. As it was said before, the rates are translation

invariant, that is the arrival and completion times of a call only depend on its length,

but not on the origin and destination stations; moreover its length is bounded, that is,

there is a maximum number k such that no station tries to make a call to any station

located to a distance bigger than k. Under these conditions (translation invariant rates

and bounded length of calls) the process is well defined and as the state space is compact

the process has at least an invariant measure (see chap. 1 in Liggett [9]).

We are going to prove that every one-dimensional loss network , under the aforemen-

tioned conditions is ergodic, that is the process has only one invariant measure and it

converges to that measure from any initial measure. In Mountford [11] it is proved that

every one-dimensional process with finite range and translation invariant rates having an

unique invariant measure is ergodic. So, it suffices to prove that any loss network has

only one invariant measure. We prove that the loss networks under consideration have

one unique reversible measure and that every invariant measure is also reversible, and

therefore the result will be proved.
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First of all, we give an estimation of the invariant measures (later we will see that

there is only one) of this process. For µ ∈ P (X) (the probability measures on X) and

ξ ∈ Xn = W {−n,...,n} or ξ ∈ X let

µn(ξ) = µ{η : η(x) = ξ(x), ∀|x| ≤ n};

we also define the configuration ξ̃n ∈ X as equal to ξ in {−n, . . . , n} and 0 outside.

We have the following

Theorem 1.- Let λi, δi the rates of a loss network with the aforementioned conditions

and µ an invariant measure of the process. Then, there exists α > 0 such that

µn+k(ξ̃n) ≥ αµn(ξ) (1)

for all n ≥ k and ξ ∈ Xn.

Before we give the sketch of the proof, let us comment the meaning of it. The event on

the right side of the inequality means that there is a configuration of calls going out from

{−n, . . . , n} to its right side, while the event on the left side of the inequality implies that,

besides these calls, there is no call going out from the frontier points of {−n, . . . , n}, that

is the points {−n − k, . . . ,−n − 1} and {n + 1, . . . , n + k}. Then, writing the inequality

in terms of conditional probabilities, the result asserts that, under the invariant measure,

the conditional probability of no calls going out from the frontier points of {−n, . . . , n}

given the calls going out from {−n, . . . , n} is bounded below by a constant which does

not depend on n nor the number and type of the calls inside. This bound will be very

useful when we use the relative entropy techniques.

Sketch of the proof. The proof is based in the construction of a coupling that proves

the existence of α > 0 such that, for all n ≥ k, ξ ∈ Xn and η0 ∈ X,

P η0

{

11n+k

ξ̃n

(η1) = 1
}

≥ αP η0

{

11n
ξ (η1) = 1

}

, (2)

where P η0 denotes the probability when the initial configuration is η0, and η1 denotes

the process at time t = 1 and 11m
ξ (η) is the indicator function that takes the value 1 if

the configuration η is equal to ξ in {−m, . . . , m}. To see that this suffices to prove the

theorem, note that (2) can be written as

S(1)11n+k

ξ̃n

(η0) ≥ αS(1)11n
ξ (η0),

where S is the semigroup of the process. As the inequality holds for all η0 ∈ X, we have
∫

S(1)11n+k

ξ̃n

dµ ≥ α

∫

S(1)11n
ξ dµ

which, if µ is invariant, is equivalent to (1).
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¿From now on, let n ≥ k, η0 ∈ X and ξ ∈ Xn be fixed. The idea to prove (2), is to

construct a coupled process, denoted (ηt, η
′

t), with the following properties:

a) Both components (ηt, η
′

t) are versions of the process under study.

b) Starting from (η0, η0) the conditional probability of {11n+k

ξ̃n

(η′
1) = 1} given

{11n
ξ (η1) = 1} is bounded below by a constant α.

The construction of the coupling can be seen in [1].

Now, we are going to study the invariant measures that are also reversible for the loss

network. A measure is reversible for the process with semigroup S if
∫

fS(t)gdµ =

∫

gS(t)fdµ

for all continuous functions f, g on X (Definition II.5.1 in Liggett [9]).

Although in the loss networks the transition rates of each particle depend on the si-

tuation of its k neighbours on the left and the right sides, we can make a transformation

of the process such that the rates of each particle only depend on its left and right neigh-

bour. That transformation is basically to define an equivalent process by considering

k−dimensional particles with state space W k, each one corresponding to k adjacent par-

ticles of the original process (that is, particle x of the collapsed process is the k tuple of

particles (kx, kx + 1, . . . , kx + (k − 1) in the original process).

Theorem 2.- The loss network has only one reversible measure.

Sketch of the proof.- If we consider the collapsed process, the rates of the particles

only depend on the left neighbour and on the right neighbour. In this case, Lemma

11.18 of Chen [3] can be extended from spin systems to our situation in such way that a

measure µ is reversible for an interacting particle process on Z with rates cab(x, η) (which

represents the change between a and b of the particle x) iff

cab(x, η)µn(η) = cab(x, ηxab)µn(ηxab) ∀ a, b, |x| < n,

for all n ≥ 1 and every configuration η admissible on Xn, where

ηxab(y) =























η(y) if y 6= x ,

η(x) if y = x , η(x) 6= a and η(x) 6= b ,

b if y = x and η(x) = a ,

a if y = x and η(x) = b .

To prove the existence of a reversible measure for the process, it suffices to consider the

process on {−n, . . . , n} with all particles outside staying in state 0. It is easy to see

that this finite process is reversible, therefore the invariant measure satisfies the above

equation. Taking in consideration the sequence of invariant measures for each n, as the
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space is compact, there is a convergent sub-sequence that also verifies the reversibility

condition.

The next step is to prove that the reversible measure is unique. This is a consequence

of Corollary 3.11 of López [10] that asserts that, any particle process on Z that verifies

some positivity conditions has, at most, a reversible measure. The positivity conditions

say, basically, that on the admissible configurations (in the loss networks the admissible

configurations are all with no more than C calls past any point of the cable) the system

has to be irreducible.

It is known that each reversible measure for a process is invariant for it, but the

converse is not true. So, even if we had proved that the loss networks have only one

reversible measure, it could exist other invariant measures that were not reversible. The

following result asserts that this is not possible.

Theorem 3.- Each invariant measure of a loss network is reversible.

Sketch of the proof.- We use the relative entropy technique that has been used before

for processes with two states and strictly positive rates as the Ising model (Holley and

Stroock [5]). The fact that our processes have null rates and non-admissible configurations

make the use of this technique harder than in other situations considered in the literature.

Given n ≥ 0, ξ ∈ En, a probability measure µ, a, b ∈ W , |x| ≤ n, let us define

Γn
ab(x, ξ) =

∫

cab(x, η)11n
ξ (η)dµ.

¿From the discussion above on reversible measures, it is easy to see that a measure µ

is reversible for the process iff Γn
ab(x, ξ) = Γn

ab(x, ξxab) for all |x| ≤ n, a, b ∈ W and ξ

admissible on Xn.

Let π be the unique reversible measure of the process. To prove that π is the unique

invariant measure, we will take µ invariant for the process and will prove that µ = π,

using the relative entropy of the marginals of µ respect to the marginals of π. Given a

finite set S and two probability measures µ and π such as π(x) > 0 for all x ∈ S, the

entropy of µ relative to π is defined as (definition II.4.1 of Liggett [9])

H(µ) =
∑

x∈S

µ(x) log
µ(x)

π(x)
.

From the above definition, it can be proved that the following equality holds

∑

a,b

∑

ξ∈En

∑

x

(Γn
ab(x, ξ) − Γn

ab(x, ξxab)) log
Γn

ab(x, ξ)

Γn
ab(x, ξxab)

=
∑

a,b

∑

ξ∈En

∑

x

(Γn
ab(x, ξ) − Γn

ab(x, ξxab))
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×

(

log
πn(ξ)

πn(ξxab)
+ log

Γn
ab(x, ξ)

µn(ξ)
− log

Γn
ab(x, ξxab)

µn(ξxab)

)

,

where the summation of x is over all values where the change is allowed.

The next step of the proof is to bound the term on the right side. For doing that, we

have that if there exists K such that
∫

cab(x, η)11n
ξ (η)dµ

∫

11n
ξ (η)dµ

≥ K,

∫

cab(x, η)11n
ξ (η)dπ

∫

11n
ξ (η)dπ

≥ K

for all n ≥ 1, a, b ∈ W, ξ admissible and |x| ≤ n:

∣

∣

∣

∣

log
πn(ξ)

πn(ξxab)
+ log

Γn
ab(x, ξ)

µn(ξ)
− log

Γn
ab(x, ξxab)

µn(ξxab)

∣

∣

∣

∣

is 0 if |x| < n and less than γ if |x| = n.

Theorem 1 asserts that the condition is satisfied and then the above inequality holds.

From that, the equality of functions Γ can be proved and the reversibility of µ is obtained

and, therefore, the uniqueness of the invariant measure.

Finally, the main result is

Theorem 4.- One-dimensional loss networks are ergodic.

Proof.- From theorem 3 we get that our one-dimensional loss networks have only one

invariant measure. Now, applying theorem 2 of Mountford [11], the result is proved.
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