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Abstract

This paper is devoted to the scalar Oseen equation, a linearized form of the Navier-

Stokes equations. Because of the various decay properties in various directions

of R
N , the problem is set in Sobolev spaces with anisotropic weights. In a first

step, some weighted Hardy-type inequalities are obtained, which yield some norm

equivalences. In a second step, we establish existence results.
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1 Introduction.

Let Ω be an exterior domain of R
N , N ≥ 2. We consider the following system:











































−ν∆u + ρu0.∇u + ∇P = f in Ω

div u = 0 in Ω

u = u∗ on ∂Ω

lim
|x|→∞

u(x) = u∞.

(1)

C. W. Oseen [7] obtained (1) by linearising the Navier-stokes equations, describing the flow

of a viscous and incompressible fluid past several obstacles, around a nonzero constant

solution u0. Thus, the result offers a better approximation than that of Stokes. The

viscosity ν, the density ρ, the external force f , and the boundary values u∗ on ∂Ω are

given. The unknown velocity field u is assumed to converge to a constant vector u∞, and

the scalar P denotes the unknown pressure. Among the works devoted to the system (1),

which is called the Oseen equations, we can cite Finn [5], and more recently Farwig [4],
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Galdi [6]. The purpose of this paper is to study a simplified case of (1), the scalar Oseen

equation:

−ν∆u + k
∂u

∂x1
= f in R

N , k > 0. (2)

To prescribe the growth or the decay properties of functions at infinity, the problem is set

in weighted Sobolev spaces. Since the fundamental solution E(x) of (2),

E(x) =
1

4πνr
e−ks/2ν , r = |x|, s = r − x1, (3)

has anisotropic decay properties, we will deal with the anisotropic weights introduced by

Farwig [3, 4]. The case k = 0 yields the Laplace’s equation studied by Amrouche-Girault-

Giroire [1] in weighted Sobolev spaces. In a first step, we establish anisotropically weighted

Poincaré-type inequalities and,in a second part, we present some existence results.

2 Notations

In this paper, we will use the following notations:

r = r(x) = |x| = (x2
1 + x2

2 + ... + x2
N )1/2, x ∈ R

N

s = s(x) = r − x1, ρ = ρ(x) = (1 + r2)1/2.

For the anisotropic weights, we set

ηα
β = (1 + r)α/2(1 + s)β/2.

We will use the following spaces, α ∈ R, 1 < p < +∞,

W 1,p
α (Ω) =

{

v ∈ D′(Ω), ρα−1v ∈ Lp(Ω), ρα∇v ∈ Lp(Ω)
}

if n/p + α 6= 1,

with its natural norm

‖v‖W 1,p
α (Ω) =

(

‖ρα−1v‖p
Lp(Ω) + ‖ρα∇v‖p

Lp(Ω)

)1/p

,

and semi-norm

|v|W 1,p
α (Ω) = ‖ρα∇v‖Lp(Ω).

For the anisotropically weighted Sobolev spaces, we set

H1,p
α,β(Ω) =

{

v ∈ D′(Ω), ηα−1
β−1v ∈ Lp(Ω), ηα

β∇v ∈ Lp(Ω)
}

,

X1,p
α,β(Ω) =

{

v ∈ D′(Ω), ηα−2
β v ∈ Lp(Ω), ηα

β∇v ∈ Lp(Ω)
}

,

W 1,p
α,β(Ω) =

{

v ∈ D′(Ω), ηα−1
β v ∈ Lp(Ω), ηα

β∇v ∈ Lp(Ω)
}

,

o

W
1,p

α,β(Ω) = {v ∈ W 1,p
α,β(Ω), v = 0 on ∂Ω},
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equipped with their natural norms.

The dual of
o

W
1,p

α,β(Ω) is noted W−1,p′

−α,−β(Ω), with 1/p + 1/p′ = 1. If Ω = R
N , we have

o

W
1,p

α,β(Ω) = W 1,p
α,β(RN ).

Let j = min{[−1/2 − N/p − α/2], [−1 − N/p − (α + β)/2]}, we have Pj ⊂ H1,p
α,β(Ω). Pj

stands for the space of polynomials of degree lower than j and [a] for the integer part of

a. We set BR = B(0, R) and B′
R = R

N \ BR. Finally, in what follows, by f ∼ g in U , we

mean the following: there exists C1, C2 > 0, such that

∀x ∈ U, C1f(x) ≤ g(x) ≤ C2f(x).

3 Weighted Hardy-type inequalities.

A fundamental property of the weighted Sobolev spaces W 1,p
α (Ω) is that their elements

satisfy Hardy-type inequalities. Amrouche-Girault-Giroire [2] proved that, for α ∈ R,

(i) the semi-norm |.|W 1,p
α (Ω) defines on W 1,2

α (Ω)/Pj′ a norm which is equivalent to the

quotient norm, where j ′ = inf(j, 0).

(ii) The semi-norm |.|W 1,p
α (Ω) defines on

o

W
1,p

α (Ω) a norm which is equivalent to the full

norm ‖.‖W 1,p
α (Ω).

We shall establish similar results in the case of anisotropically weighted Sobolev spaces.

We choose to consider the particular case N = 3, p = 2, but the results can be generalised

to N ≥ 2 and p ≥ 2.

We consider the sector

S = SR,λ = {x ∈ R
3; r ≥ R, 0 ≤ s ≤ λr}, R > 0, 0 < λ < 1. (4)

In R
3 \S, we have r ∼ s. Therefore, the spaces H1,2

α,β(R3 \S) and W 1,2
(α+β)/2(R

3 \S) coincide

algebraically and topologically. It follows that, in R
3 \S, the previous results hold. Thus,

it is enough to prove anisotropically weighted Hardy-type inequalities in S.

We first deal with the case β > 0.

Lemma 1 Let α, β ∈ R satisfy β > 0. Then there exists a constant C > 0, such that

∀u ∈
o

H
1,2

α,β(S), ‖u‖H1,2

α,β
(S) ≤ C|u|H1,2

α,β
(S) (5)

Idea of the proof. We first prove the inequality for u ∈ D(S), then by density, we prove it

for all u in
o

H
1,2

α,β(S). Since β > 0, it is enough to prove

I =

∫

S

(1 + r)α−1sβ−1|u|2dx ≤ C

∫

S

(1 + r)αsβ|∇u|2dx. (6)
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Using polar coordinates with u(x) = v(r, θ, ϕ), (6) is equivalent to the following inequality

I =

∫ 2π

0

∫ +∞

R

∫ θ0

0

(1 + r)α−1(r − r cos θ)β−1r2 sin θ|v|2dθdrdϕ

≤ C

∫ 2π

0

∫ +∞

R

∫ θ0

0

(1 + r)α(r − r cos θ)β sin θ|
∂v

∂θ
|2dθdrdϕ, (7)

with

θ0 such that cos θ0 = 1 − λ, 0 < λ < 1.

We set

J =

∫ θ0

0

(1 − cos θ)β−1 sin θ|v|2dθ.

An integration by parts yields

J =
1

β
[(1 − cos θ)β|v|2]θ0

0 −
2

β

∫ θ0

0

(1 − cos θ)β ∂v

∂θ
vdθ.

Since β > 0 and v ∈ D(S), we have

J ≤
2

β

∫ θ0

0

(1 − cos θ)β|
∂v

∂θ
||v|dθ.

Using the Cauchy-Schwarz inequality, we get

J ≤
4

β2

∫ θ0

0

(1 − cos θ)β+1|
1

sin θ

∂v

∂θ
|2dθ.

This last inequality allows to have (7).�

Remark 2 Inequality (5) is not valid for β ≤ 0. For β = 0, Farwig [3] gave a counter-

example with the case α = 0. For β < 0, taking as counter-example v(r, θ, ϕ) = v(r), we

can show that the inequality (7) does not hold.

Nevertheless, for β ≤ 0, we have the analogue of Lemma 1 in the anisotropically weighted

Sobolev space X1,2
α,β(S).

Lemma 3 Let α, β ∈ R satisfy β ≤ 0 and α + β + 2 > 0. Then there exists C > 0, such

that

∀u ∈
o

X
1,2

α,β(S), ‖u‖X1,2

α,β
(S) ≤ C|u|X1,2

α,β
(S).

Idea of the proof. Let u ∈ D(S) and u(x) = v(r, θ, ϕ). For R > 0 sufficiently large, it is

enough to prove

I =

∫ 2π

0

∫ +∞

R

∫ θ0

0

rα+1(1 + r − r cos θ)β sin θ|v|2dθdrdϕ (8)

≤ C

∫ 2π

0

∫ +∞

R

∫ θ0

0

rα+3(1 + r − r cos θ)β sin θ|∇u|2dθdrdϕ.
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We set

J =

∫ +∞

R

rα+1(1 + r − r cos θ)β|v|2dr.

Since β ≤ 0 and α + β + 2 > 0, we have

J ≤
1

α + β + 2

∫ +∞

R

∂

∂r
[rα+2(1 + r − r cos θ)β]|v|2dr.

An integration by parts and the Cauchy-Schwarz inequality yields

J ≤
4

(α + β + 2)2

∫ +∞

R

rα+3(1 + r − r cos θ)β|
∂v

∂r
|2dr,

which allows to obtain (8).�

By Lemma 1, we have the two following results.

Lemma 4 Let α, β, R ∈ R satisfy β > 0, α + β + 1 6= 0 and R > 0. Then, there exists a

constant CR > 0 such that

∀u ∈
o

H
1,2

α,β(B′
R), ‖u‖H1,2

α,β
(B′

R
) ≤ CR|u|H1,2

α,β
(B′

R
). (9)

In other words, the semi-norm |.|H1,2

α,β
(B′

R
) is a norm on

o

H
1,2

α,β(B′
R) equivalent to the norm

of H1,2
α,β(B

′
R).

Idea of the proof. It is enough to consider u ∈ D(B ′
R). We use the following partition of

unity

ϕ1, ϕ2 ∈ C∞(B′
R), 0 ≤ ϕ1, ϕ2 ≤ 1, ϕ1 + ϕ2 = 1 in B′

R,

with

ϕ1 = 1 in SR,λ/2, suppϕ1 ⊂ SR,λ.

We have

‖u‖H1,2

α,β
(B′

R
) = ‖ϕ1u + ϕ2u‖H1,2

α,β
(B′

R
) ≤ ‖ϕ1u‖H1,2

α,β
(B′

R
) + ‖ϕ2u‖H1,2

α,β
(B′

R
).

Since β > 0, Lemma 1 yields

‖ϕ1u‖H1,2

α,β
(B′

R
) = ‖ϕ1u‖H1,2

α,β
(SR,λ) ≤ C|ϕ1u|H1,2

α,β
(SR,λ) = C|ϕ1u|H1,2

α,β
(B′

R
)

Since α + β + 1 6= 0, using the following Hardy-type inequality

∀v ∈ D(]R, +∞[),

∫ +∞

R

(1 + t)γtξ|v(t)|pdt ≤ (
p|γ + ξ + 1|

c
)p

∫ +∞

R

(1 + t)γ+ptξ|v′(t)|pdt

with γ, ξ, R ∈ R such that ξ > 0, γ + ξ + 1 6= 0 and (γ + ξ + 1)2R + ξ(γ + ξ + 1) > 0, we

get

|ϕ1u|H1,2

α,β
(B′

R
) ≤ C|u|H1,2

α,β
(B′

R
).

61



Thus, we have

‖ϕ1u‖H1,2

α,β
(B′

R
) ≤ C|u|H1,2

α,β
(B′

R
),

and by the same method, we get

‖ϕ2u‖H1,2

α,β
(B′

R
) ≤ C|u|H1,2

α,β
(B′

R
),

which conclude the proof.�

Theorem 5 Let α, β ∈ R satisfy β > 0 and α + β + 1 6= 0. Let j ′ = inf(j, 0), where j is

the highest degree of the polynomials contained in H1,2
α,β(Ω). Then the semi-norm |.|H1,2

α,β
(Ω)

defines on H1,2
α,β(Ω)/Pj′ a norm which is equivalent to the quotient norm.

4 Weak solutions of the scalar Oseen equation.

In this section, we propose to solve the scalar Oseen equation with ν = k = 1, N = 3 :

−∆u +
∂u

∂x1

= f in R
3. (10)

We introduce the concept of weak solution.

Definition 6 A function u : R
3 → R is called a weak solution to (10) if

(i) u ∈ H1
loc(R

3),

(ii) u satisfies

∀ϕ ∈ D(R3),

∫

R3

∇u.∇ϕdx −

∫

R3

u
∂ϕ

∂x1
= [f, ϕ]. (11)

We are, first, interested in existence of weak solutions when the data f ∈ W −1,2
0 (R3),

which is the dual of W 1,2
0 (R3).

Theorem 7 Given a function f ∈ W−1,2
0 (R3), the problem (10) has a weak solution

u ∈ W 1,2
0 (R3) such that

‖∇u‖L2(R3) ≤ ‖f‖W−1,2
0

(R3). (12)

More over
∂u

∂x1
∈ W−1,2

0 (R3). (13)

Idea of the proof. For R > 0, we consider the following equations







−∆u +
∂u

∂x1
= f in BR

u = 0 on ∂BR,
(14)
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Since f ∈ W−1,2
0 (R3), we have f ∈ H−1(BR), thus, by Lax-Milgram theorem, we prove

the existence of a unique weak solution uR ∈ H1
0 (BR) to problem (14) such that

‖∇uR‖L2(BR) ≤ ‖f‖W−1,2
0

(R3), (15)

then, it suffices consider a sequence of problems analogous to (14) and to choose a weakly

convergent subsequence.�

We now look for weak solutions when the data f ∈ W−1,2
α,β (R3).

Theorem 8 Let α, β ∈ R satisfy β > 0 and β > |α|. Then for a function f ∈ W−1,2
α,β (R3),

there exists a weak solution u ∈ W 1,2
α,β(R3) to (10) such that

‖u‖W 1,2

α,β
(R3) ≤ C‖f‖W−1,2

α,β
(R3). (16)

Idea of the proof. Let R > 0 be given and let uR ∈ H1
0 (BR) be the unique weak solution

of (14). We need to prove the uniform estimate

‖uR‖W 1,2

α,β
(BR) ≤ C‖f‖W−1,2

α,β
(R3), (17)

which allows to end the proof as in the previous Theorem. In the variationnal equation

∀ϕ ∈ H1
0 (BR),

∫

BR

∇uR.∇ϕdx +

∫

BR

∂uR

∂x1
ϕdx = [f, ϕ],

we use the test function ϕ = η2α
2βuR, thus, by an integration by parts, we get

∫

BR

η2α
2β |∇uR|

2dx +

∫

BR

uR∇uR.∇η2α
2β −

1

2

∫

BR

|uR|
2
∂η2α

2β

∂x1

dx = [f, η2α
2β uR].

The Young inequality implies that

∫

BR

η2α
2β |∇uR|

2dx +
1

2

∫

BR

(

−
∂η2α

2β

∂x1
−

|∇η2α
2β |

2

η2α
2β

)

|uR|
2dx ≤ [f, η2α

2β uR].

Introducing the equivalent anisotropic weight functions

ηα
β = (1 + δr)α/2(1 + εs)β/2 (18)

with sufficiently small positive constants δ and ε, Farwig [3] proved that if α, β ∈ R satisfy

β > 0 and |α| < β, then there are positive numbers c1(δ, ε) = O(δ) + O(ε), c2(δ) = O(δ),

such that

−
∂η2α

2β

∂x1

−
|∇η2α

2β |
2

η2α
2β

≥ (((β − |α|) − c1(δ, ε))δεs(x) − c2(δ))η
2α−2
2β−2(x), x ∈ R

3. (19)

This result with Theorem 5 yield (17).�

63



References

[1] C. Amrouche, V.Girault, J. Giroire . Weighted Sobolev spaces for Laplace’s

equation in R
n, J. Math. Pures et Appl., 73, 1994, pp. 579-606.

[2] C. Amrouche, V.Girault, J. Giroire . Dirichlet and Neumann exterior problems

for the n-dimensional Laplace operator. An approach in weighted Sobolev spaces, J.

Math. Pures et Appl., 76, 1997, pp. 55-81.

[3] R. Farwig . A variational approach in weighted Sobolev Spaces to the operator −∆+

∂/∂x1 in exteriors domains of R
3, Math. Z., 210, 1992, pp. 449-464.

[4] R. Farwig . The stationary exterior 3D-problem of Oseen and Navier-Stokes equa-

tions in anisotropically weighted Sobolev spaces, Math. Z., 211, 1992, pp. 409-447.

[5] R. Finn . On the exterior stationary problem for the Navier-Stokes equations, and

associated perturbation problems, Arch. Ration. Mech. Anal., 19, 1965, pp. 363-406.

[6] G. P. Galdi . An introduction to the mathematical study of Navier-Stokes equations,

vol I, Springer-Verlag, 1994.

[7] C. W. Oseen . Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig:

Akademishe Verlagsgesellschaft, 1927.

64


