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Abstract

If we consider the B-splines’s MRA of 0 and 1 orders, there is a relationship

between the wavelets of one of them and the functions of the Riesz’s basis of another.

Besides, we have found a characterization for the two-scale sequences and Riesz’s

basis of these MRAs. Due to this new decomposition, the functions in Vj can be

written using two expressions depending on the possible applications.
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1 Multirresolution Analysis

Definition 1 Let’s say that a chain of closed subspaces of L2(R) constitutes a MRA, [1],

if and only if verifies

1.− . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ;

2.−
⋃

j

Vj = L2(R);

3.−
⋂

j

Vj = {0};

4.− f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1;

5.- ∃ φ0 ∈ V0, such that{φ0(.− n); n ∈ Z}is a Riesz’s basis of V0. This function is called

scaling function.

There are another definitions of Multirresolution Analysis where the scaling func-

tion constitutes an orthonormal basis of the closed sub-spaces of the chain. Due to

this definition and using someone of his properties, its can be proved that there ex-

ists a chain of new subspaces called Orthogonal Complements, Wj associated to each

Vj, verifying: Vj+1 = Vj

⊕
Wj, furthermore this sum is orthogonal; Another important

consequence that we want to remark is: f(x) ∈ Vj ⇐⇒ f(x − 2−jn) ∈ Vj. Let

φj,n(t) := 2j/2φ0(2
jt− n) ∀j, n ∈ Z. Where φ0,0 ≡ φ0.
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1.1 MRA of B-splines: Definition and Properties:

In the literature of Multirresolution Analysis of splines there is one important family of

these, the B-splines or basic splines:

Definition 2 Let n ∈ N, we will define the B-splines of order n, Nn(x), as follows:

i)N0 = χ[0,1], ii) ∀n > 0, Nn+1 = N0 ∗ · · ·n+1 ∗N0 = Nn ∗N0 (1)

Let us consider n = 0, 1, 2, . . ., this B-spline’s family verify many important properties,

however we are going to remark the following ones for its application in our work:

1.− Nn(x) > 0 ∀x ∈ (0, n+ 1).

2.− SuppNn = [0, n+ 1].

3.− Nn ∈ Sn(Z)
⋂
L2(R).

4.−
∑

k∈Z

Nn(x− k) = 1.

5.− N ′

n+1(x) = Nn(x) −Nn(x− 1).

Proposition 1 For each n=0,1,2,... the set {Nn(t−m)}m∈Z is a Riesz system in L2(R).

After introducing the definition and properties of these B-splines, we are going to see

when they define a MRA.

Theorem 1 For each n=0,1,2,..., the subspaces Vn
j = {Sn

2(2
−jZ)}j∈Z form a MRA. Where

we denote Sn
2 = L2

⋂
Sn.

Two-scale relations:

All the Multirresolution Analysis can be characterized by a sequence that it is de-

noted hn and it is defined by hn :=< φ1,n, φ0,0 >; when the scaling function defines

an orthonormal basis, these sequences are the coefficients of the decomposition of the

functions in the basis of the correspondent subspaces Vj. In general, through this se-

quence, we can to obtain one first relation-ship between the functions of the different

levels. In B-spline’s case, another coefficients [1] are given by the expression: Nm(x) =

∑m
k=0 2−m+1

(
m

k

)
Nm(2x−k). Observing this expression, this formula relates B-splines

of different and consecutive levels; so, these coefficients are called two-scale sequence.

If we consider the called Haar’s Wavelet or 0-spline wavelet, denoted by ψ0
0,0, and

the scaling function of the 1 B-spline’s MRA then:

φ̃1
0,0(t) =

{
t si t ∈ [0, 1]

−t + 2 si t ∈ [1, 2]
ψ0

0,0(t) =

{
1 si t ∈ [0, 1/2]

−1 si t ∈ [1/2, 1]

So, we are working with two Multirresolution Analysis verifying the following condition

D
(
φ̃1

0,0

)
(t) =

(
d

dt
N1

)
(t) =

√
2ψ0

−1,0(t) = 21/2 ψ0
0,0(2

−1t) (2)
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2 Derivatives of scaling function and wavelet functions in 0

and 1 B-splines’s MRA

If we calculate the derivatives of the wavelet functions and the scaling functions associated

to them, we have that the derivative of the scaling function is

dφ1
0,0

dt
(t) =

∑

k

a1
k g

′(t− k)

=
∑

k

a1
k ψ

0
0,0(

t

2
− k

2
) =

√
2

[
∑

p

a1
2p ψ

0
−1,p(t) +

∑

p

a1
2p+1 ψ

0
−1,p(t− 1)

]
(3)

Analogously, we can obtain the expressions that are verified for these functions in any

level of the MRA. Thus, D(φ̃1
j,n(t)) = 2j 2j/2 21/2 ψ0

−1,0(2
jt − n) = 2(3j+1)/2 ψ0

−1,0(2
jt −

n). And, the derivative of the Wavelet function at the level j can be expressed by

D
(
ψ1

j,n(t)
)

= 27j/2
∑

m

∑

p

(−1)m h
1

1−m a
1
p ψ

0
−1,n(2j+1t− p−m).

2.1 Relationship between sequences h1 and h0

We denote h1 := {< φ1
0,0, φ

1
1,n >}n, h0 := {< φ0

0,0, φ
0
1,n >}n

From the fact that N1 is a Riesz’s base of V 1
0 and deriving the decomposition obtained

of φi
0,0 ∈ V i

0 ⊂ V i
1 ,where{φi

1,n}n, i = 0, 1 let be an orthonormal base,it is got:

(
d

dt
φ1

0,0)(t) = 23/2
∑

m

h1
m(

d

dt
φ1

0,0)(2t−m) = 22
∑

p,k

h1
p−k akψ

0
0,0(t− 2−1p) (4)

We compare the two previous expressions putting them in function of the same ele-

ments of the orthonormal basis, it is got for each m ∈ Z:

21/2
∑

k

∑

q

(−1)q h0
1−q h

0
m−2(q+k) ak =

∑

k

∑

q

(−1)m−q h0
1−m+q h

1
q−k ak (5)

Remark 1 We want to have an important mention about this result. We have put our

interest in the B-splines’s MRA case, but unless the relations of the derivatives with these

splines, we have only used, properties that all MRA, with an analogous condition about

the derivative of the scaling function and wavelet function. So that, the relation (5) could

be generalized.

2.2 Z-Transform relations:

However, the previous relations are more interesting for the possible applications, if we

work with the Z-transforms of these functions, because this transform permit us to con-

sider analytic functions instead of sequences. Moreover, with the new expressions that we
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are going to obtain, a filter interpretation is possible. The following results and notations

are necessary:

(Ua)n :=

{
ak si n = 2k

0 if n = 2k − 1
⇒ U(z) = A(z2)

a−1,n := (−1)n an ⇒ A−1(z) = A(−z)
τkan := an−k ⇒ T (z) = z−kA(z)

ãn := a−n ⇒ Ã(z) = A(1/z)

a1,n := (−1)n a1−n

⇒ A1(z) = −1
z
A(−1

z
)

If we operate in adequate way in both members of the (5) and we use the above results,

it is became

21/2 z−1 A(z2)H0(z)H0(−z−2) = H1(z)A(z)H0(−1/z) (6)

3 Characterization of functions through Z-transforms

A) x(t) ∈ V 1
0 : Let hx

n :=< x, x1,n >, and let we denote g0 := {< g, φ1
1,p >}p and g1 :=

{< g(2.), φ1
1,p >}p, where it is can be seen g1 = {< g, φ1

0,p >}p, g0 = {21/2
∑

p

g1
p h

1
q−2p}q

and so G0(z) = 21/2G1(z2)H1(z). As we have an orthonormal basis:

hx
n =< x, x1,n > = 21/2

∑

k,p

ak ap < g(t− k), g(2t− n− p) >

= 21/2
∑

k,p,q,l

akap g
0
q g

1
l δ2k+q,n+p+l =

(
ã ∗ ˜

g1 ∗ Ũa ∗ g0

)
(n)

(7)

These scalar products, cannot be in general obtained, but we are working with func-

tions with compact support, the B-splines, so, there are a finite numbers of these products

and we can calculate them.

B-splines: In this case, we can calculate the scalar products. Taking Z-Transforms

and substituting these products in our expression, we would have got

Hx(z) =

√
2

24
A(z2) A(

1

z
)

[
1

z3
+

6

z2
+

10

z
+ z + 6

]
(8)

B) {x(t− n);n ∈ Z} orthonormal basis of V 1
0 : Now, we have that δn,m =< xn, xm >=

∑

p

ap aq < g(t− p), g(t− (m + q)) >=
2

3

∑

p

ap ap−s +
1

6

∑

p

ap

(
ap−(s+1) + ap−(s−1)

)
. If

we again consider its Z-transform, we obtain

1 = A(z)A(
1

z
)

[
2

3
+

1

6z
+
z

6

]
(9)
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Thus, we have obtained a Necessary condition for the candidates to be a scaling

function of a B-spline MRA. Getting x ≡ φ1
0,0

H1(z) =

√
2

4

A(z2)

A(z)

z4 + 6z3 + 10z2 + 6z + 1

z2(z2 + 4z + 1)
(10)

4 Derivatives spaces

We remind that our initial hypothesis is given by (4). We want to introduce a new

decomposition of these spaces V 1
j = V 1

j−1

⊕
W 1

j−1, which allows us to obtain their elements

in function of the elements of the another MRA, A0. Firstly, we are going to define a

new subspaces that they are necessary, for that the translations of the wavelets being in

adequate spaces. It is know that the wavelet functions are in the orthogonal complements

Wj and in these spaces ψ(t) ∈ Wj ⇐⇒ ψ(t− 2−jn) ∈ Wj it’s verified. However, we are

interested in other translations, so we cannot assure that the new function be in these

complements. Thus, we need the following definition

Definition 3 We will call Shifted spaces of the orthogonal complements to

Wm
j :=

〈
{ψm

j,p(t− 2−j−1) / ψm
j,p ∈ Wm

j }
〉

Then, due to this definition, we can see in (3) that ψ0
−1,p(.−1) ∈ W 0

j . After introducing

those complements, we are going to find one relation between the derivative subspaces de

A0 and the ones of A1.

Theorem 2 In any pair of Multirresolution Analysis verifying (2) is got

D
(
V 1

0

)
= W 0

−1 +W 0
−1

Proof: We are going to seeing for double inclusion,

D (V 1
0 ) ⊂ W 0

−1 +W 0
−1: Let v1

0(t) ∈ V 1
0 ⇒ v1

0(t) =
∑

k

αk φ
1
0,0(t − k), deriving this expres-

sion:

d v1
0(t)

dt
=
∑

k

αk

d φ1
0,0(t− k)

dt

=
√

2
∑

k

αk

[
∑

p

a2p ψ
0
−1,p[(t− k)] +

∑

p

a2p+1 ψ
0
−1,p[(t− k − 1)]

]
(11)

For proving, we must make difference between k = 2m, or k = 2m + 1 m ∈ Z. In

both cases the result is ψ0
−1,p(.− 2m− 1) ∈ W 0

−1 and ψ0
−1,p(.− 2m) ∈ W 0

−1.

W 0
−1 +W 0

−1 ⊆ D(V 1
0 ): We are going to make this proof in two previous steps:
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W 0
−1 ⊆ D(V 1

0 ): As ψ0
−1,n(t) = ψ0

0,0(2
−1t − n) = 2−1/2 ( d

dt
N1)(t − 2n) = d

dt
(N1(t − 2n))

andN1 ∈ V 1
0 =⇒ N1(t− n) ∈ V 1

0 ∀n ∈ Z =⇒ N1(t− 2n) ∈ V 1
0 . Then, ψ0

−1,n ∈ D(V 1
0 ).

W 0
−1 ⊆ D(V 1

0 ): Now, the basic functions are ψ0
−1,0(.− 1) = ψ0

0,0(2
−1.− 2−1 − n). So that,

ψ0
0,0(2

−1t− 2−1 − n)) = 2−1/2( d
dt
N1)(t− 1 − 2n)

N1 ∈ V 1
0 =⇒ N1(.− 1 − 2n) ∈ V 1

0

}
⇒ ψ0

−1,n(t− 1) ∈ D(V 1
0 ).

So that, as we are working with vectorial subspaces, W 0
−1 +W 0

−1 ⊆ D(V 1
0 ). Further-

more, the sum is direct since this subspaces are disjoints.

Theorem 3 In the B-splines’s MRA D(V1

0
) ⊆ V0

0
= W0

−1

⊕
V0

−1
it is verified. Also,

this result can be to generalize to anyone MRA verifying similar condition to (2).

Proof:

B-splines: For that, we are first going to prove the inclusion of the each subspace. Thus,

it is obvious that W 0
−1 ⊆ V 0

0 , because

ψ0
−1,0(t) ∈ W 0

−1 ⊆ V 0
0 =⇒





∃ {ξm}m∈Z ∈ l2(Z) such that

ψ0
−1,0(t) =

∑

m

ξmN0(t−m)

ψ0
−1,n(t− 1) = ψ0

0,0[2
−1(t− 2n− 1)] = ψ0

−1,0(t− 2n− 1)

and then, ψ0
−1,0(t− 2n− 1) =

∑
m ξmN0(t− 2n− 1 −m) =

∑
p ξp−2n−1N0(t− p) ∈ V 0

0 .

As {ξp}p ∈ l2(Z) and N0(t− k) ∈ V 0
0 =⇒ W 0

−1 ⊆ V 0
0 .

The another inclusion, W 0
−1 ⊆ V 0

0 , is obvious. By that, we can assure that D(V 1
0 ) ⊂

V 0
0 for the B-splines’s MRA

Any MRA: The constant of the expression (11), 2−1/2, can be modified, and this one

leads us to any small changes in the constants of our expression. However, if we keep this

constant, we have ψ0
−1,0(t) ∈ W 0

−1 ⊆ V 0
0 =⇒ ∃ {ξm}m∈Z ∈ l2(Z) such that ψ0

−1,0(t) =∑

m

ξmN0(t−m)

Besides: ψ0
−1,n(t − 1) = ψ0

0,0[2
−1(t − 2n − 1)] = ψ0

−1,0(t − 2n − 1). So that, we can

conclude that

ψ0
−1,0(t− 2n− 1) =

∑

m

ξmN0(t− 2n− 1 −m) =
∑

p

ξp−2n−1N0(t− p) ∈ V 0
0

since {ξp}p ∈ l2(Z) y N0(t− k) ∈ V 0
0 . So, it is got W 0

−1 ⊆ V 0
0 , and for that D(V 1

0 ) ⊂ V 0
0 .

�
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5 Generalization of this decomposition

Theorem 4 There exists two subspaces A and B such that they verify

A, B ∈ L2(R) with V 1
0 = A

⊕
B; D(A) = W 0

−1, D(B) = W 0
−1

Furthermore, every function belonging to V 1
0 can be reconstructed by

v(t) =
∑

n

(a(2n+ 1)g(t− 2n) + b(2n)g(t− 2n− 1))

Proof:

Existence: Let v1
0(t) ∈ V 1

0 =⇒ v1
0(t) =

∑

n

αnφ
1
0,0(t − k) and it is had too

dφ1

0,0(t)

dt
∈

W 0
−1 +W 0

−1. So,v1
0(t) = a(t)+ b(t) where da

dt
(t) ∈ W 0

−1,
db
dt

(t) ∈ W 0
−1. Thus, if we integrate

it and using the fact that g(t) ∈ V 1
0 =⇒ g(t− n) ∈ V 1

0 , ∀n ∈ Z:

da(t)
dt

= 2−1/2
∑

n

anψ
0
0,0(2

−1t− n)

= 2−1/2
∑

n

an
dg

dt
(t− 2n)





⇒
a(t) = 2−1/2

∑

n

αn g(t− 2n)

b(t) = 2−1/2
∑

n

βn g(t− 2n− 1)

Then, we are going to define A :=< {{
√

3/2g(t − 2n); n ∈ Z} > and B :=<

{{
√

3/2g(t−2n−1); n ∈ Z} ; these base are orthonormal by properties of B-splines. With

these definitions of our sets, it is can be proved that A = {a(t) ∈ L2(R); da
dt

(t) ∈ W 0
−1}

and B = {b(t) ∈ L2(R); db
dt

(t) ∈ W 0
−1}.

V 1
0 = A

⊕
B: By construction of A and B, it is immediately that, ∀v(t) ∈ V 1

0

v(t) = a(t) + b(t) = 2−1/2
∑

n

αng(t− 2n) + 2−1/2
∑

n

βng(t− 2n) (12)

It is can to see that A ∩ B = ∅ and then the decomposition V 1
0 = A

⊕
B, due to the

fact that W 0
−1 ∩W 0

−1 = ∅ because we have a MRA and our functions is in L2(R).

Furthermore, the elements of these sets, A y B, can be characterizable through their

samples; so, we are going to obtain a new reconstruction for the functions of V 1
0 . Besides,

in this reconstruction, using the 1 B-spline, not all the samples are necessary. Thanks to

this fact, an optimization in the general reconstruction algorithm is offered.

Expression of a(t): Let a(t) = 2−1/2
∑

n αng(t− 2n), we only need the even translations

of g(t);we have remember that Supp g(t) = [0, 2] =⇒ Supp g(t− 2n) = [2n, 2n + 2] and

these supports are disjoints; so that, taking t0 ∈ R, ∃|n0 ∈ N with g(t0 − 2n0) 6= 0, and:

a(t0) = 2−1/2αn0
g(t0 − 2n0) (13)
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If we consider t0 = 2m or t0 = 2m+ 1, it is got

a(2m) = 2−1/2αn0
g(2m− 2n0) = 2−1/2αn0

g(2(m− n0)) = 0, ∀m ∈ Z

a(2m+ 1) = 2−1/2αn0
g(2(m− n0) + 1) = 2−1/2αn0

, ∀m ∈ Z

As we are working with orthonormal basis of A, it is got αn0
= 21/2 a(2m + 1) = <

a, g(t0 − 2n) >; substituting in (13) it is lead us to a(t0) = a(2n0 + 1) g(t0 − 2n0).

However, we can find one relation between t0, n0 and m, with the following argument

g(2m+ 1 − n0) 6= 0 ⇐⇒ n0 ∈
(

2m−1
2
, 2m+1

2

)
⇐⇒ n0 = [2m+1

2
] = m

g(t0) 6= 0 ⇐⇒ t0 − 2n0 ∈ (0, 2) ⇐⇒ n0 ∈
(

t0−2
2
, t0

2

)
⇐⇒ n0 = [ t0

2
]

All this allow us to obtain a new expression for

a(t) =
∑

n

a (2n+ 1) g (t− 2n) (14)

Expression of b(t): Analogously:

b(t0) = b

(
2[
t0
2

]

)
g

(
t0 − 2[

t0
2

] − 1

)
(15)

and substituting (14) and (15) in (12), a new reconstruction for the signal in V 1
0 is given

v(t) =
∑

n

[a(2n+ 1)g(t− 2n) + b(2n)g(t− 2n− 1)] (16)

Another expression for v(t) ∈ V 1
0 : Also, it is easy to prove that

1.- a(2m) = 0 = b(2m− 1) ∀m ∈ Z,

2.- a(2m+ 1) = 3/2αm = 3/2 < a, g(· − 2m >, ∀m ∈ Z,

3.- b(2m) = 3/2 βm = 3/2 < b, g(· − 2m− 1) >, ∀m ∈ Z.

As v(t) = a(t) + b(t) then v(2m) = a(2m) + b(2m) = b(2m) and v(2m+ 1) = a(2m+

1) + b(2m+ 1) = a(2m+ 1). We can substituting this in the previous formula for v(t), so

that, we obtain a different way for the reconstruction of these signal. One advantage of

this expression is that we need a less number of samples of the signal, thanks to the fact

explained above. Then:

v(t) =
∑

n

(v(2n+ 1)g(t− 2n) + v(2n)g(t− 2n− 1))

�
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5.1 Generalization for any level j

Definition 4 We define the set Aj as Aj =
〈
{
√

2
j

2
−1 3 g(2jt− 2n); n ∈ Z}

〉
, and the

set Bj as Bj =
〈
{
√

2
j

2
−1 3 g(2jt− 2n− 1); n ∈ Z}

〉
.

With these definitions, the previous result is generalized to V 1
j = Aj

⊕
Bj, ∀j ∈ Z.

Remark 2 Because we are working with a MRA

(∪jAj)
⊕

(∪jBj) = ∪jAj

⊕
∪jBj = L2(R)
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