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BIVARIATE APPROXIMATION BY
DISCRETE SMOOTHING PDE SPLINES

M. Pasadas and M. L. Rodriguez

Abstract. This paper deals with the construction and characterization of discrete PDE
splines. For this purpose, we need a PDE equation (usually an elliptic PDE), certain
boundary conditions and a set of points to approximate. We give two results about the
convergence of a discrete PDE spline to a function of a fixed space in two different cases:
(1) when the approximation points are fixed; (2) when the boundary points are fixed. We
provide a numerical and graphic example of approximation by discrete PDE splines.
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81. Introduction

The objective of this paper is to find a function verifying certain conditions regarding the
boundary of a domain while at the same time the function has to approximate a data point set
in its interior. Consequently, this method can be conceived as a surface generation technique
(see [4], [1] and [10] for similar works). The method entails minimizing a functional in an
adequate space. This functional has information concerning the equation in terms of a semi-
norm and information regarding the data set point in terms of discrete least squares. This
paper is the logical continuation of [5] and [6]. The remainder of it is organized as follows:
Section 2 explains the notations; Section 3 defines and characterizes discrete PDE splines;
Section 4 studies the convergence of a discrete PDE spline to an adequate function; Section 5
gives a description of the computation of the method, and we finish with some numerical
and graphical examples of various discrete PDE splines that illustrate the behaviour of the
different parameters of the method. Similar proofs of the results can be found in [7, Chapter 5]
with some variations.

82. Preliminaries

We shall use the following notations: the Euclidean norm and inner prod®T iwill be
denoted by(-)m and (-, -)m respectively, for anyne N, m> 2; H"(Q) represents the usual
Sobolev space of orderof (classes of) functiona € L?(Q), together with all their partial
derivativesd'u, in the distribution sense, of ordéf < n, where, for alli = (i1, i2) € N?,

li| =i1+iz andd'u(x) = 5 ,91“;”,2 , for anyx = (x1,x2) € Q and, finally,Hj(Q) is the closure
X[ 0%

of C(Q) in H"(Q). ObviouslyHJ(Q) = L?(Q).
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The space-?(Q) is equipped with the inner produ¢ti,v)po = [o U(X)v(x)dx and the
corresponding normujpo = (U,U)g/o 2 The Sobolev spadd"(Q) is equipped with the inner
product((u,v))na = 3 jij<n Jod'u(x )8' v(x) dx, the norm|ulnq = ((u, u))ﬁ(é, the semi-inner
products(u,v); o = ¥ =i Jq 9'U(X)d'v(x)dx, with 0 < | < n, and the corresponding semi-

norm|uf; o = (u, u),l)/Qz, forall0o<I <n.

83. Formulation of the problem

Let Q be an open, bounded, polyhedral domaitRéf Thus,Q has a Lipschitz boundary. Let
L:H?(Q) — L%(Q) be a differential operator given by

Lux) = 5 (~1)110)(pj(x)0'u(x)), x € @, (1)

lil,[iT<n

wherep; € Cll(Q) andp = pj, for all |il, \J| < n. We now consider the symmetric bilinear
form associated with defined orH"(Q) x H"(Q) by (u, V)L = ¥ i jjj<n(Pj9'U, d'V)o o, and
we assume that _ _
E'pj(x)E >0, VxeQ, )
lil,lif<n-1
and that there existg > 0 such that

S Epi(0E = vig)3, vxeQ, (3)

li,[il=n

for all & = (&1,&) € R2, where&' = £1E%2, for anyi = (i1,i2) € N2, Due to (3), the differ-
ential operatot_ is said to be strongly elliptic of2. According to the hypotheses (2)—(3) the
bilinear form(-,-), defines a semi—inner product ét(Q) whose associated semi—norm is
denoted byu|L = (u,u);” 12
Suppose We are given two integers 2 andr > 0; the functionsf € L?(Q) andh; €

C(Q), for j= ,n—1, anordered s&' = {ay,...,an} of m=m(r) >0 (me N*) distinct
points ofQ, an ordered sa@N = {by,...,bn} of N € N* distinct points 00 Q, none of which
is a geometric vertex d@, a data vectoﬁ = (B1,...,Bm) € R™ a subser? of real positive
numbers that admits 0 as an accumulation point, forragys#, a triangulation, of Q by
means of simplices or rectangles of diaméter< h. Moreover, we suppose given, for any
h e J7, a finite element spacé, made up overs;, such that

Xy has finite dimensioh= I (h), 4)
Xp € H'(Q)NC" Q). (5)

Foreach =1,...,Nandj=0,1,...,n—1, we denote,_y),j1 : H"(Q) — R the linear

map given bYDn(1—1)4j+1= arju (by), and lettN : H"(Q) — RN"be the linear operata® (v) =
(M (V))k=1....nn. Forallk=1,...,Nn, we suppose that

¢y is a degree of freedom ;. (6)
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We define the operatgy : H"(Q) — R™, given byp(v) = (v(a))1,...m, the vector space
HYM = {u € X, : tNu= 0} and the convex sét\" = {u € X, : TNu=y}, beingy = (y)i=1..nn
with Ynq-1)4j+1 = hj(by), forl =1,...,Nandj=0,...,n—1. Later, we suppose that

kerp NPy_1(Q) = {0}, (7)

whereP,_1(Q) is the space of polynomial functions defined oR&rof degree< n— 1 with
respect to the set of variables.
Let L be the operator given in (1) and let us consider the problem

{ Lu(x) = f(x), xe€Q,

i (8)
%(x) —hi(x), x€dQ, 0<j<n—1

Definition 1. We say thaioy, is a discrete PDE spline ), associated with., BN, y, A", B
ande > 0, if oy, is a solution of the problem

{Gh S HNh,

9
e HM J(on) < I(v), ®)
wherel is the functional defined oH"(Q) by J(v) = (pv—B)2 + & (V|2 — 2(f,V)oq) .

Now we establish a variational characterization of the discrete PDE spline and a method
of Lagrangian multipliers to solve Problem (9). The proof of these results can be consulted
in [7].

Theorem 1. Problem (9) admits a unique solution which is also the unique solution of the
variational problem: findoy, € HN" such that

vve HYM, (poh,pv)m+&(oh, V)L = (B,pV)m+&(f,V)oq.

We give a result that is useful if we want to obtain an expression of the discrete PDE
spline.

Theorem 2. There exists a uniqu@h,A) € HN x RN" such that for all
(PO, pV)m+&(0n, V)L + (T, A )nn = (B.pV)m+&(f, V)00, (10)

for all v € Xy, whereoy, is the unique solution of Problem (9).

84. Convergence

Letg € H™1(Q). We are going to enunciate two results of the convergence of the discrete
PDE spline associated with tNg, A", pg ande to the functiong under certain conditions,

ash — 0 andr — +o, independently ofN, in the first result, and as — 0 andN — +oo,
independently of, if g is the solution of the boundary problem (8), in the other one. The
proof of these results can be consulted in [7].
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In order to do this, we assume that the fanii¥y )nc ,» verifies the following relationship
(cf. P. Clément [3]): for alh € 7, there exists a linear operatbi, : L>(Q) — X,, and a
constantC > 0, verifying:

1) Vhes#,v1=0,....n wWeH"Q), v—Npv|iq <CH v 10
(11)

1/2
2) Yhe s, Wwe H”+1(Q),il1im0< Z |vI'Ihv|ﬁH7K> =0.
Y \KEZ,

Moreover, we suppose that the familyg}, ) » satisfies the inverse hypothesis of Ciar-
let [2]. More specifically,

h
avzo,Vhe%,VKe%,hva, (12)
K
whereh is the diameter oK. For the first result we suppose
. 1
fggg;xg(x—a>2_o(F>, r — oo, (13)

and that the familied&" and.%, are linked by the relation

,
3C>0, vhe . vreN, vk e g, S29A K)oz (14)
meagK)

where mea&) is the measure df. Note that this hypothesis translates a property of “asymp-
totic regularity” of the density of the points &f over the elementk of %,.

For the first result of convergence we suppose that the number of interpolation phints,
is fixed and that = &(r). For anyr € N and eacth € .7, let 6], be the discrete PDE spline
associated witt, BN, TNg, A", pg ande.

Theorem 3. Suppose that (4)—(6) and (11)—(14) hold, and that

g=0(r?), r— 4o, (15)
h2(n+1) 2
———=0(1), =+, (16)
Then,
lim_[|0f ~ gl = 0. 17)

We suppose now that the number of approximation poim{s), is fixed and that =
£(N). Likewise, we suppose thatc H>"(Q) NC"%(Q) is the solution of the boundary
problem (8). We denote by the discrete PDE spline associated wittBY, tNg, A", pg
ande, for allh € # andN € N.

Since the injection oH"(Q) in C"~?(Q) is compact, it is possible to define the op-
eratorzN : H"(Q) — RN(™Y given by, for any € H"(Q), TNV = (§iV)i—,_n(n_1), With
On-1)(1-1)+j+1 = Pn(l—1)+j+1s foralll =1,...,Nandforallj=0,...,n—2.
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We suppose that
kertN NP, 1(Q) = {0}, (18)
1
sup min(x—b), =0( = N — +oo. 19
xeag beBN< )2 (N)7 te (19)

Theorem 4. Suppose that (4)—(7), (11)—(13), (18) and (19) hold, with

h4n
h=0(1), N— 4w, and ?20(1)7 N — oo,

Then we havémp_. ;e |6 — gllng =0

§5. Computation

We are now going to obtain the expression of the discrete PDE splinket h be fixed and
let us consider a triangulatiof, of Q by means of rectangles such that the point&%bf
are nodes of its triangulation. We number the basis functions of the finite elementgpace
o1,...,@. We can then express, as the following linear combinatiosy(x) = ¥1_; % @i (x),
and, if we calculate the unknown coefficientswe then have the expressionay.

By substituting in (10), we obtain, for alle HN",

|
-Z\% (P, pV)m+e(@, VL) + (A, T V)nn = (B,pV)m+ € (. V),

subject to the restrictions" (zi':lylw,) =y, which are equivalent to

|
_;% (pwi,p@)m+e(wi, ®))L) + A, TN 0))nn= (B,poj)m+e(f,0))0q, 1

IN
IN

I
N .
NT; ((Oi):ya OSJSN”,
2=

that is a linear system with+ Nn equations and the unknowns, ..., %,A1,...,Ann. IS

matricial form is
C D\/(y\ (T
Dt 0)\A)  \y/)’

whereC = ((pa)i,pw,>m+8(a)i oj)L )1<ij<|' = (¢j(w ))1<|<| d<j<nn Y= (r,--m)'
A=, ) T=((B.pao)m+e(f,m)on)i iy andy = (y1,....ynn)".

If we write A= (j(a; ))l<|<ml<1<l andR = ((wi, o)L )lgi’jgl,thenC:AtAjLsRand
f=AB+ef, withf = (01, Fo,- -, (@1, Flog)".
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Figure 1: Discrete PDE splines with 225 points of approximatioa 5, N = 16 ande = 107>
(left) andm=900,d = 5,N = 16, & = 1072 (right).

86. Numerical and graphical examples

We present two examples in order to test the validation of the smoothing method that we
have constructed. In both, we have taken= (0,1) x (0,1). Likewise, we have taken a
triangulation.%, of Q, made ofd x d equal squares, such that the point®8dfare nodes of

this triangulation ik Q, except the geometric vertices Qf as explained in the introduction.

The finite element spack, is constructed oy, from the Bogner-Fox-Schmit rectangle of
classC!. For point setd’, we have considered a randomly distributed seDoa {(x,y) €

R?: ((x—0.5,y—0.5)), < 0.2} C Q. In addition, we have considered

0% 92\2
Lu= (W + a—yz) u(x,y),
andf(x,y) = 0. The boundary conditions are particular for each example.

Example 1. For the first example, we have constructed a discrete PDE spline. For this
purpose, we take the boundary conditions from the function given by

h(x,y) = —((y—0.5)241)((x—0.5)2+1),

i.e., ho(x,y) = h(x,y) andhy(x,y) = %(x,y), for all (x,y) € Q. Finally, we take = pg
where

g(xy) = 3,/0.2— (x~05)2 — (y— 052~ 23, ¥(xy) €D.

Figure 1 shows two graphs of discrete PDE splineXimssociated witt, B, TNh, A", pg
ande. We can observe the effect of the parametetWhen this parameter decreases the
discrete PDE spline comes closer to the approximation points.

Example 2. We have used our method to approximate a test function. We have chosen
Nielson’s function given bjN(x,y) = ¥ cost(4(x? +y— 1)).

To get a quantitative measure of the degree of approximation provided by each discrete
PDE spline inX, associated with, BN, NN, A", pN ande, we have computed an estimation



Bivariate approximation by discrete smoothing PDE splines 175

[(dxd [ N[ m [ & | Erel [ dxd N[ m ] & ] Erel \
0 [ 10°]5.63x10°1 0 [10° ] 4.11x10°2
3x3 | 8 [225]10% [ 355x10 L || 5x5 | 16 | 225| 10°© | 1.71x10 2
625 | 109 | 1.53x10 T 625 | 10 9 | 1.55x10 2
0 [10°] 2171072 0 [10° ] 8.61x10°°
7x7 | 24 [ 225 10° [ 1.12x10 2 || 10x10 | 36 | 225 | 10 © | 8.04x10 3
625 | 10 9 | 0.21x10 2 625 | 109 | 7.72x10 3

Table 1: Error for some discrete PDE splines approximating Nielson’s function.

Figure 2: Discrete PDE splines correspondingte: 225,d = 5, N = 16 ande = 10~° with
Erel = 0.0155002 (left), and ton= 625,d = 10,N = 36 ande = 102, with E,o; = 0.007725
(right), both of which approximate Nielson’s function.

of the relative erroE,e in theL2 norm, given by

Brel = CgOWh(Xi) —N(x)[? / T§0|N(Xi)|2> 1/2,

whereN is the approximating function anf; }i—1... 1600 iS @ fixed set of points regularly
distributed onQ. Table 1 shows the relative error computed for discrete PDE splines with
various parameter values. As can be observed, the quality of fitting is influenced by all the
parameters but is not random. It is necessary to change all of them in terms of Theorem 3
for a good fitting. Moreover, as the relative error is not monotone with respecivwe can
surmise the existence of an optimal value pfvhen the other parameters are fixed, according

to the GCV method (see Wahba [9]). Figure 2 shows the graphs of two discrete PDE spline
which approximate Nielson’s function to different values of the problem parameters. Finally,
when the data come from the boundary function we get the convergence even if we do not
take approximation points iQ. In this case, the method is in reality the Galerkin method.
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