Monografias del Seminario Matematico Garcia de Gald&8n61-168 (2006)

FRACTAL SPLINES
M. A. Navascués and M. V. Sebastian

Abstract. Fractal methodology provides a general setting for the understanding of real-
world phenomena. In particular, the classical methods of real-data interpolation can be
generalized by means of fractal techniques. In this paper we use this kind of procedures
to define a family of interpolating mappings associated to a cubic spline. This fact adds
a “degree of freedom” to the function, allowing to preserve or modify its properties. In
particular, the elements of the class can be defined so that the smoothness of the original
be preserved. Under some hypotheses, and using Hermite polynomial techniques, bounds
of the interpolation error for function and derivatives are obtained.
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81. Introduction. Fractal Interpolation Functions

Fractal interpolation techniques provide good deterministic representations of complex phe-
nomena. Barnsley ([1, 2]) was a pioneer in the use of fractal functions to interpolate a set
of data. Fractal interpolants of Barnsley can be defined for any continuous function defined
on a real compact interval. This method constitutes an advance in the techniques of ap-
proximation, since all the classical methods of real-data interpolation can be generalized by
means of fractal techniques (see for instance [6, 7]). Fractal interpolation functions are de-
fined as fixed points of maps between spaces of functions using iterated function systems.
The theorem of Barnsley and Harrington ([3]) proves the existence of differentiable frac-
tal interpolation functions. In this paper we describe a very general way of constructing
smooth fractal functions with the help of Hermite interpolating polynomials. The proce-
dure has a very low computational cost. In the last section of the communication, a par-
ticular type of interpolating mappings associated to a cubic spline is defined. Under some
hypotheses, bounds of the interpolation error for function and derivatives are obtained. Let
to <ty <--- <ty be real numbers, arld= [to,tn] C R the closed interval that contains them.

Let a set of data point§(tj,x) € | xR: i=0,1,2,...,N} be given. Sel, = [tn_1,ts] and let

Ln:l —1n, ne{l,2,...,,N} be contractive homeomorphisms such that:
Ln(to) =tn-1, Ln(tN) =tn, (1)
|Ln(C1)an(Cz)| §||C17C2|, Vc1,c €1, (2)

forsome < | < 1. Let—1<an<1,forn=1,2,...,N, andF = | x R. LetN continuous
mappings, : F — R be given satisfying:
Fn(t07X0) :anlv Fn(tN’XN):Xna n21527"'7Na (3)
|Fn(t,X)—Fn(t,y)‘§|Oln||X—y|, tEl, X7y€R- (4)
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Now define functions
Wn(t,X) = (Ln(t),Fa(t,x)), ¥Yn=12... N, (5)
and consider the following theorem:

Theorem 1 ([1, 2]). The iterated function system (IF$lF, w,: n=1,2,...,N} defined
above admits a unique attractor G that is the graph of a continuous functidn—£ R which
obeys ftj)) =x fori=0,1,2,...,N.

The previous functiorf is called a fractal interpolation function (FIF) corresponding to
{(Ln(t),Fa(t,x))}IN_;. The functionf : I — R is the unique one satisfying the functional
equation

f(Ln(t)):Fn(taf(t)), ﬂ:1,2,...,N, tela (6)
or

f(t) = Fa(Lyt(t), foly2(t), n=1,2,...,N; t€ln= [tn_1,tn]. 7)

Let.Z be the set of continuous functioffis [to, tn] — R such thatf (tg) = xp and f (tn) = xn.
Define a metric on by

d(f,g) =[If —glle =max{|f(t) —g(t)| :t € [to.tn]} V F,ge.F.
Then(&#,d) is a complete metric space. Define a mapping# — % by
(Tf)(t):Fn<|_r?l(t),f0|_;1(t)) Vte [tnflf[n]a n:15257N (8)

Using (1)—(4), it can be proved thét f)(t) is continuous on the intervat,_1,t,] for n =
1,2,...,N and at each of the pointg,ts,...,ty_1. T iSs a contraction mapping on the metric
space.Z,d)

ITf=Tglew <[t f — |, 9)
where|a|o = max{|an| :n=1,2,...,N}. Since|a|. < 1, T possesses a unique fixed point
on.Z, that is to say, there i§ € . such tha(T f)(t) = f(t) fort € [to,tn]. This function is
the FIF corresponding tev,. The most widely studied fractal interpolation functions so far
are defined by the following IFS:

Ln(t) = ant 4 bn, (10)
Fn(t,x) - OtnX—|— qn(t)7
with
an = (tn —tn—l) d bn . (tN tn—l —totn) . (11)

(tn—to) an (tn —to)
o, is called the vertical scaling factor of the transformatmgnanda = (o4, @, ..., 0n) is
the scale vector of the IFS. & (t) is a line ([1, 6]), the FIF is termed affine (AFIF). The
cubic FIF ([9, 7]) are constructed using @gt) a cubic polynomial. In many cases the data
are evenly sampledh=t, —tn_1, ty —to = Nh, thena, = 1/N. In the particular case, = 0,
forn=1,2...,Nthen:F,(t,x) = gn(t) and f (t) = gno L;(t) fort € I,
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82. Construction of differentiable FIF

In this section we study the construction of differentiable fractal interpolation functions. The
theorem of Barnsley and Harrington [3] provides the conditions on the IFS (10) which are
sufficient for their existence. We will define IFS satisfying the prescribed hypotheses.

Theorem 2 (Barnsley and Harrington [3])Letth <t; <tp < --- <ty and Ly(t), for n=
1,2,...,N, the affine function {(t) = ant + by satisfying the expressions (1)-(2). Lat-a
L) = t”t,\’lﬁ‘tgl and R (t,X) = anX+an(t), forn=1,2,...,N, verifying (3)—(4). Suppose, for
some integer p> 0, |an| < ah and ¢, € CP[to,tn], forn=1,2,...,N. Let

ox+ (1)

Fnk(tax) - Kk 9 k: 17 27 A pa (12)
ak
(k) (k)
t t
Xox = (o). XN,k:qu(N), k=1,2,...,p.
a;— o ay — ON

If Fno1 k(tn, Xn,k) = Frk(to, Xok), withn=2,3,... N and k=1,2,..., p, then

{(La(t),F(t, %) s
determines a FIF & CP[t,ty] and f¥ is the FIF determined by

{(Ln(t), P, ))IN,, k=1,2,...,p.
From here on, we consider a uniform partition in order to simplify the calculus,

an = % (13)

If we consider a generic polynomig}, (for instance) the equality proposed in the theorem
implies the resolution of systems of equations. We will proceed in a different way. In order
to define an IFS satisfying Theorem 2, we consider the mappings (10) where

On(t) =goLn(t) — on b(t), (14)

g is a continuous function satisfyirgft;)) =%, i =0,1,...,N, andb(t) is a real continuous
function, b # g, such thab(tg) = Xp andb(ty) = xn. In the reference [8] we proved some
properties about this IFS.

Definition 1. Letge €(1), A:tp <ty < --- <ty a partition of the closed interval= [to, t].
Letbbe as in the previous paragraph anét (s, ... an) the scaling vector of the IFS defined
by (10) and (14). The corresponding Hif,, or simplyg®, is termeda-fractal function ofg
with respect to the partitioA and the functiorb.

Theorem 3. [8] The a-fractal function ¢ of g with respect té and b satisfies the inequality

oo

19% —glle < 19— bl|, (15)

T 1-10e
with |a|e = Maxi<n<n{|an|}. Besides, § interpolates to g, that is to say,
ga(tn):g(tn) vn:oala"'7N'
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Remarkl. By the equation (7), fore I, n=1,2,...,N,
g*(t) = g(t) + an(g* —b) oL (1) (16)

The first step is to see which conditions we should impod#ttpso that the hypotheses
of Barnsley & Harrington Theorem are satisfied, assuring the existence of differentiable FIF.
Let us considep > 0, |an| < 1/NP andgp(t) € CP[to, tn], forn=1,2,...,N. The prescribed
conditions, fom=23,... Nandk=1,2,...,p, are:

Fn-1.k(tn, Xn,k) = Frk(to, Xok)- (17)

The theorem considefF(t,x) = (ocnx+ qﬁk)(t))/aﬁ. In this particular case, adn(t) =
t/N+bn andLj(t) = 1/N = a,, we have by (14)

1
o’ (1) = 7 9 (Ln() —an b (1), Vk=0.1,....p. (18)
So that (17) becomes:

g(k) (tN) — NkOCN bk (tN)
1— NKoyy

NkOCn_]_ — 01 NK pk) (tn)

g® (to) — Nk b (to)
1— Nkay

If we consider constant scale factars= o, foralln=1,... N:

9% (tn) —b% (tn) = g% (to) —b™ (o). 19)
A sufficient condition in order to satisfy this equality is

b® (tg) = g® (1,

b (ty) =g®(tn), k=0,1,2,...,p.

Thus we look for a functiob such thab agrees withg at the extremes of the interval until the
p-th derivative. The conditions (20) will be satisfied if a Hermite interpolating polynomial
b is considered, with noddsg,ty and p derivatives at the extremes. Briefly let us remember
some concepts on Hermite polynomial interpolation. Consider the real nu@bgﬁ@, for
k=0,1,...ni—1andi=0,1,...,m with & < & < --- < &n. The Hermite interpolation
problem for these data consists of determining a polynoRwahose degree does not exceed
n, wheren+ 1= 3", n;, and which satisfies the following interpolation conditions:

PO@E) =y¥, k=01,..m—-1, i=01..m (21)

The existence and uniqueness of the polynoiiatrifying the previous conditions (21) it is
assured ([10]). Hermite interpolating polynomials can be given explicitly by :

m N

P(x) = ZO k__l yi(k) Lik(X),
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where the polynomialkj € [, are generalized Lagrange polynomials ([10]). In the case in
study, the sought polynomi# is the functionb(t). Let us assumen= 1, the interpolation
points are the extremes of the interfaltn], o =to, &1 =tn, and forr =0,1,...,p:

b (to) =g (to), b (tn) =g (tn),

whereb,g € ¥P andn; = p+1, fori =0,1, thenn+ 1= Zilzo n = 2p+2sothan=2p+1.
As consequench(t) is a Hermite interpolating polynomial of degrep2 1. The functiong
can be arbitrarily chosen satisfyigge CP.

We consider a theorem of Ciarlet, Schultz & Varga concerning Hermite interpolation.

Theorem 4 (Ciarlet, Schultz & Varga [4]) Let g€ C'[to,tn] with r > 2p+ 2, let A be any
partition of [to,tn], At <t1 < --- < ty, and lete(t) be the unique interpolation of(g in
HP ™ ie., g (th) = oM (t), forall 0< n<N,0<I < p. Then,

”AH2p+27k
Kkt (2p+2—2k)!

19" = 0¥ lleo < 355 19272, (22)

forallk=0,1,....p+ 1

In the case in study we need a single subinterval of lefigthb — a. Using (15) and (22)
fork=0andp = b,

|0t
1— |0t

lg—bljo < %= T

2p+2
=1 |alw 22072 (2p+2)! 197+ o. (23)

9% =gl <

83. Interpolation Error Bounds

We consider again a uniform partition and constant scaling factossccording to theorem
of Barnsley & Harrington the IFS associated with Katn derivative of a FIF can be expressed
as:

{Ln(t) = Lt+bn, 24)

Foc(t,X) = Nkax+N&q 1), k=0,1,2,....p.
In our case,
On(t) = goLn(t) — anb(t),

whereb(t) is a Hermite interpolating polynomial of degrep2 1 of g. The derivatives of
On(t) are:

1
o’ (1) = Sx 0¥ (La) —ab¥ (), k=0.12....p, (25)

so that the IFS defining theth derivative of the FIFgy is expressed as:

(26)

Ln(t) - lt"—bﬂ,
Frk(t,X) = N¥ax+g® oLy (t) —Nka b® (1), k=0,1,2,...,p,
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that is to saygnk(t) = g o Ln(t) — N¥ab®(t), k=0,1,2,..., p, so that the&—th derivative
of the functiona-fractal ofg respect tax andb, gif, agrees with thex-fractal function ofgk
respect td\Xo andb®¥), that is to say:

(g)® = (@¥)N&, k=0,1,2,....p.

To bound the difference between tketh derivative ofg and thek—th derivative ofgy we
can use Theorem 3:

Nk|a| H (k)

1—NK|«| ”

k
198)™ = g%l = (@®)i* — 9¥ 1w <
Considering thab(t) is the Hermite interpolating polynomial of degree 2 1 of g, the
theorem of Ciarlet, Schultz & Varga can be used in order to bdlgi#l — b¥||,,, so that
applying (22) forp = b and considering e C(2P+2)
N¥ o
a0 _ g < NI a0 o
[(g6)™ =gl < 1- NN 9 |
Nk|06| T2p+2—k
<
= T-NNa| 22072 K (2p+2— 2K)!

192 |, k=0,1,...,p.

84. Fractal Cubic Splines

In this section we study a particular case, considering the IFS (10)awith1/N, an = o,
foralln=1,2,...,N, andgy(t) = goLn(t) — anb(t), whereg is a cubic spline with respect
to a uniform partitiomA andb is a Hermite interpolating polynomial satisfying the described
conditions (20) wherg = 2 (b(t) is a polynomial of degrea = 5). In order to bound the
interpolation error we consider the following theorem:

Theorem 5 (Hall & Meyer [5]). Let f € C*a,b] and |f*)(t)] <L for all t € [a,b]. Let
A={a=ty<t; <--- <ty = Db} be a partition of the intervala, b], with constant distances
between nodes#h t, —t,_1. Let S be the spline function that interpolates the values of the
function f at the pointstts,...,tn € A, being & type | or Il. Then,

110 -8 |lw <G Lh*" (r=0,1,2), 27)
with Gy = 5/384, C; = 1/24, C, = 3/8. The constantsg£and G are optimum.

Remark2. A spline is type | if its first derivatives a andb are known. A spline is type Il if
it can be explicitly represented by its second derivativessatdb.

To estimatg|x — gZ||«, it is easy to observe that
X =G5 lleo < [1X—Qlleo + 19— G |-

The first adding can be bounded applying the theorem of Hall and Meyergin@&(t) is a
cubic spline. Thus
Ix—glle < CoLh. (28)
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In the second term, Theorem 3 can be used; from (15)

o]
1-|e

l9-gpllo < 19— blle. (29)

From (28)—(29)

o
1-|o
The inequality above can be transformed considering the following result:

=05l < CoLh*+ g blle- (30)
Lemma 6. If || < 1/N?, there exists s= s(N) such tha < s< Land|o| < 1/N?*S,

Proof. By hypothesi§a| < 1/N?. Since ¥N>™* — 1/N? asx — 0", there exists = s(N)
such that < s < 1 and|a| < 1/N%*S, O

As a consequence, fift| < 1/N?, there exists such that

|or| 1
< )
1—|a| = N2Fs—1

and we obtain the following result.

Theorem 7. Let X(t) be a function verifyingt) € C*[to, ty] and|x®)(t)| < L for all t € [to, tn].
Lets=s(N) > Osuchthal < s< land|o| < ﬁ Then,

1
X —gf [l < Koh® + NZs 1 19— blleo,

or
2-+s

(1)

h
X — g§ || < Koh*+ TZs s 19— bl[w,

where K = LGy is the constant of Hall and Meyer Theorem ane-Ty —tg = Nh.
We proceed in a similar way for the derivatives of the spline.

Theorem 8. Let X(t) be a function verifyingt) € C*[to, tn] and|x (t)| < L for all t & [to, tn].
Let g(t) be a cubic spline and(b) be a Hermite interpolating polynomial of degree 5 of g.
Let s=(N) > O be, such thab < s< 1and|e| < 7. Then,

1
X = (95 [l < Kih®+ Nis—1 19— B[,

and
1
Ns—1

where g = LCy, K» = LC; are the constant of Hall and Meyer Theorem ang- Ty —to = Nh.

X"~ (g8)" [l < K2h?+ 19" = bl (32)

The differencegg® —b®||., can be bounded considering thes the interpolating Her-
mite polynomial ofg and using a theorem of interpolation error for this kind of approximants.



168

[1]

(2]
3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

M. A. Navascués and M. V. Sebastian

References

BARNSLEY, M.F. Fractal functions and interpolatiofionstr. Approx. 24 (1986), 303—
329.

BARNSLEY, M. F. Fractals EverywhereAcademic Press, Inc, 1988.

BARNSLEY, M. F., AND HARRINGTON, A. N. The calculus of fractal interpolation
functions. J. Approx. Theory 571989), 14-34.

CIARLET, P. G., HULTZ M. H. AND VARGA, R. S. Numerical methods of high-
order accuracy for nonlinear boundary value problemisimer. Math. 1967), 394—
430.

HaALL, C. A., AND MEYER, W. W. Optimal error bounds for cubic splines interpola-
tion. J. Approx. Theory 1§1976), 105-122.

NAVASCUES, M. A., AND SEBASTIAN, M.V. Generalization of Hermite functions by
fractal interpolationJ. Approx. Theory 1311 (2004), 19-29. .

NAVASCUES, M. A., AND SEBASTIAN, M. V. Some results of convergence of spline
fractal interpolation functiongzractals 11 1 (2003), 1-7.

NAVASCUES, M. A., AND SEBASTIAN, M. V. Fitting curves by fractal interpolation:
An application to the quantification of cognitive brain processesHimking in Pat-

terns: Fractals and Related Phenomena in Nativie M. Novak, Ed. World Scientific,
2004.

SEBASTIAN, M. V. Dinamica no lineal de registros electrofisiolégicddonografias
del Seminario Matemético “Garcia de Galdeano”, 2001.

STOER, J., AND BULIRSCH, R. Introduction to Numerical AnalysisSpringer, New
York, 1980.

M. A. Navascués and M. V. Sebastian

Dpto. Matematica Aplicada

Universidad de Zaragoza

C/ Maria de Luna 3

50018 Zaragoza, Spain

manavas@unizar.es andmsebasti@unizar.es



