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PHI-DIVERGENCE TEST STATISTICS IN
MULTINOMIAL SAMPLING FOR HIERARCHICAL
SEQUENCES OF LOGLINEAR MODELS WITH
LINEAR CONSTRAINTS

Nirian Martin and Leandro Pardo

Abstract. We consider nested sequences of hierarchical loglinear models when expected
frequencies are subject to linear constraints and we study the problem of finding the model
in the the nested sequence that is able to explain more clearly the given data. It will be
necessary to give a method to estimate the parameters of the loglinear models and also a
procedure to choose the best model among the models considered in the nested sequence
under study. These two problems will be solved usingdibdivergence measures. We
estimate the unknown parameters using the minimdivergence estimator (Martin

and Pardo [8]) which can be considered as a generalization of the maximum likelihood
estimator (Haber and Brown [5]) and we considérdivergence test statistic (Martin [7])

that generalize the likelihood ratio test as well as the chi-square test statistic, for testing
two nested loglinear models.
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81. Introduction

Loglinear models define a multiplicative structure on the expected cell frequencies of a con-
tingency table. We shall assume that we hkeells (if k = | x J we get a two-way contin-
gency table) and we denote them®y,...,Cyx. Given a random sampM, Yo, ..., Y, with
realizations from#% = {Cy,...,C¢} we denote by = (Py,...,Px)" with

. N; n .
P = n] and Nj:.zkl{ci}(Yi)’ i=1....k (1)
i=

Assuming multinomial sampling and denoting py6o) = Pr(Cj), j = 1,...,k, the statistic
(N1,...,Ny) is obviously sufficient for the statistical model under consideration and is multi-
nomially distributed with parametersandp(09) = (p1(00),. .., px(00)). We shall denote,

m;j(60) =E(Nj) =np;j(60), j=1,....k @)

andm(6g) = (my(0o),...,mk(60))".
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Given ak x (t + 1) matrix X and rankX) =t + 1, the set
C(X) = {logm(8) € R¥: logm(@) = X0, 6 c R"*} (3)

represents the class of the loglinear models associatedkwhte suppose, in the following,
T
thatJ = (1, Lk 1) € C(X). Taking into account (2), the parameter space is defined by

© ={0 cR" :logm(8)=X60 and JTm(8) = n}. Now in addition to the previous model
we shall assume that we hawve 1 < t linear constrains defined by

C'm(0)=d", (4)

whereC andd* arek x (r —1) and(r — 1) x 1 matrices, respectively. If we consider the linear
constraintJTm(@) = n, associated to the multinomial sampling, we can write the parameter
space for this new model by

0" ={0 cR":logm(8) = X6 and L 'm(8)=d},

whereL = (J,C),d = (n, (d*)T)T and rankL) =rankLT,d) =r.
The problem that has motivated our research involves a nested sequence of hypotheses

Hi:p=p@®), 00y, 1=1..m m<t<k-1, (5)
where@él) D 682) D--D eé”” with dim(OE)')) =t +1,ranKL)=r, I =1,...,m, such that
tra<t andryi>r, I=1....m-1 (6)

where at least one of both inequalities is a strict inequality. In this framework, there is an
integerm* (1 < m* < m) for which Hpy is true butHpy 11 is not true. A common strategy for
making inference om* (e.g., Cressie and Read [2, p. 42]) is to test successively,

Hnun : Hip1 againstHag i H), 1=1,...,m—1, @)

where we continue to test as long as the null hypothesis is accepted, and wa'itifebe

the firstl for which H,_ ; is rejected as a null hypothesis. The full operating characteristics of
this sequence of tests of nested hypotheses are not known. Our goal in this paper is to present
¢-divergence test statistics for testing a sequence of nested hypotheses as given in (5).

§2. Minimum ¢-divergence estimator

Since the parameter valuesﬁ@(()') :1=1,...,m} are generally unknown, most tests require
their estimation. In this context the maximum likelihood estimator, under the linear constrains
given in (4) is defined by

o~

8" = argmaxh' 6,
6cO*
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whereh™ = (n*)T X andn* is an observation froniNy,...,Ny). It is a simple exercise to
establish that equivalent@m can be defined by

A( . ~
6 I = arg minDyuyiiback (P, P(0)), 8)
6cO*

whereDguiback (P, P(0)) is the Kullback-Leibler (see Kullback [6]) divergence between the
probability vectorp andp(6),

k=)

K
Dkullback (P, (0 z )

The definition (8) hints at a much more general inference framework based on divergence

measures, which was investigated by Martin and Pardo [8]. In the next several paragraphs,

we give the essential details of the framework for estimation and hypothesis testing there.
Consider thep —divergence defined by Csiszar [3] and Ali and Silvey [1]

k .
D¢(p7q)zij¢(p?>, 9 €D, ©9)
=1 qj

where ®* is the class of all convex functiong(x), x > 0, such that ak = 1, ¢(1) =
¢”(1)>0,andax=0, 0¢(0/0) =0and 0p(p/0) = p limy—« ¢(u)/u. For everyp € d* that
is differentiable ak = 1, the functiony (x) = ¢ (x) — ¢’ (1) (x— 1) also belongs t@*. Then
we haveDy, (p,q) = Dy (p,q), andy has the additional property thgt (1) = 0. Because
the two divergence measures are equivalent, we can consider tié gebe equivalent to
the setd = d*N{¢ : ¢’ (1) = 0}. In what follows, we give our theoretical results ibE O,
but we often apply them to choices of functionghi. For more details about-divergences
see Pardo[10].
Based in (8) and (9), in the cited paper of Martin and Pardo, was considered the mini-
mum ¢-divergence estimator in loglinear models when we have some linear constraints and

multinomial samplingafpr), is given by

A

)
0, —argegéeDga(p p(o)). (10)

In the next section we shall use this estimator to define a family of test statistics for testing
the nested hypothes¢H!, : | =1,...,m} given in (5).

83. Phi-divergence test statistics

In this section for testing nested hypothe$bls: | = 1,...,m} given in (5), we test
Hnun : Hip1 againstHag i H), 1=1,...,m—1,
using the family of test statistics

0 2n

~(r),92 ~(1),9:
T¢1-,¢2 ¢f( )D¢1(p(8 ) p(el+1 2))7 (11)
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where@fr)"p2 anda,(i)fz are defined by (10). Whe‘F}p(l'?¢2 > ¢, we rejectHyy in (7), wherec

is specified so that the size of the testris
[
Pr(T¢(l?¢2 >C ’ H|+l) =a, (OAS (O, 1) . (12)

In the next theorem we establish that, undiy, : H .1, the test statlstld'() , converges
in distribution to a chi-squared distribution with—t 1 —rj + 1 degrees of freedom
(xt?*tl+1*rl+rl+1)’ I =1,...,m—1. Thus,c could be chosen as thd — a)-th quantile of

A2t 1141141 distribution,

c= thzftwrfl i (1-0a), (13)

where Pfx? < x2(p)) = p. Notice that, whenp; (x) = ¢ (x ) = xlogx—x+ 1, we obtain

the usual likelihood-ratio test, and that, whian(x) = (x 1)? and¢, = xlogx — X+ 1, we
obtain the Pearson test statistic (e.g. Haber and Brown [5]).

Theorem 1. Suppose that datélN;,...,Ny) are multinomially distributed according to the
loglinear model (3). Consider the nested sequence of hypotheses given in (5) and (6). Choose
functions¢; and ¢, € ®. Then for testing Ry : Hi.1 against Hy; : H;, the asymptotic

null distribution of the¢-divergence test statist|c(;:[)¢2 is a chi-squared distribution with
t —t.1 — 1 + 141 degrees of freedom. '

Proof. Based on Theorem 2 in Martin and Pardo [8], it is not difficult to establish that
vA(p(81"*) ~p(B0) ) = R/(p—p(6) + 0n(1).
with Rj = Dp(g,)XiHi(80)X, i =1,1+1, where
Hi(60) = (X{ Dp(gg)Xi)~* — (X{ Dp(ag)Xi) X Dp(ggLi
x (LiTDp(Oo)Xi (X{ Dp(ag) Xi) XTI Dp(eo)l—i)_
% L{ Dp(go) Xi (X{ Dpgg) Xi) 4, i=11+1

There1‘ore,‘|’¢fB¢2 =22 +0p(1), being

2/ =D (o/o)ﬁ(p(& ) —p(6i2 2))
(1.0 - o)
b (1/2)ﬁ(p(9| ) - p(90)> - Dp(;/;\m@ (6°47) - p(eo))

- Drjé/;(Rl —Ri41)v/n(P—p(80)) +0p(1).

The asymptotic distribution of the-divergence test statistic (11) will be a chi-squared iff
the matrixZz = D_, 1/2 (R = Ri11)Zp9,) (R — R|+1)TD;&,/02), where the matrix, g, =

P(6o)
Dp(g) — P(80)p(80)" is idempotent and symmetric.
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Itis clear that

RiZp(60) = Dp(6) XiHi(80)X[ (Dp(a,) — P(60)P(80)")

= Dp (g XiHi(00)X{ Dp(ey). i =1,1+1,
andK; = 7(1/2)R Dl{Z 00) = Dléz >XiHi(00)XiTD‘1){;0) is a symmetric matrix. Therefore to

establish thakz = (K| — K1) (K| —Kj11) is an idempotent matrix will be enough to see
thatK|, —Kj,1 is an idempotent matri, = K| —Kj;1). We establish that

i) KiKi =Kj, i=|,|—|—l,
ii) KiKit1 =K.

Part i) follows becausdﬂi(Oo)XiTDp(oo)XiHi(Oo) = Hi(6p), i = 1,1 +1. Part ii) follows
taking into account thaX, ;1 is a submatrix oi;. There exists a matriB such thafX|, 1 =
X;Band

~1
XiH1(80)X[ Dp(gy Xi+1 = X|B—X (x,T Dp(,,O)x.) X[ DpooL 1

1 1
T T T

X <L| Dp(6o) Xi (x| DP(GO)X|> X Dp<oo>'-l)

x L Dp(g,) XiB.

Multiplying on the right side byH,1(0p), the last term is zero becaukgis a submatrix of
L|+l andH|+1(60)B|+1(60) = 0(I|+1+1)Xf|+1’ thereforeLlTDp<90)X| BH|+1(90) = 0r| X (tj+1)-
The degrees of freedom dT(;'?q,z coincides with the trace of the matrk,. It is not
difficult to establish that
tr(Ki)=ti+1—r;, i=I1+1,
therefore
tr(Ki —Kiy1) =t —tipa—r+ry. O

To test the nested sequence of hypothésks | = 1,...,m} referred previously, we need

an asymptotic independence result for the sequence of test stei[;p%ﬂbcsT( )¢2 ,Tq,(lm;>
wherem* is the integer K m* < mfor which Hpy is true butHg 1 IS not true. Th|s result
is given in the theorem below.

Theorem 2. Suppose that datélNy, ..., Ny) are multinomially distributed according to the
loglinear model (3). We first test\ldy : H against Hy : H_1, followed by Ky : H 1 against

Hait : Hi. Then, under the hypothesis;H, the statistics ji;? and -':;B(pz are asymptotically
independent.

Proof. The st::xtistich,(l'_)d)2 can be written in the way,

To,, = VI(P—P(80))" MT M| Vi (p—p(80)) +0p (1), (14)
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where

M, = (/)(R| Riy1) and Ri=Dpy,XiHi(B0)X], i=1I1+1

Similarly,
To o) = vVA(P—p(60)" M 1M)_1v/n(p—p(80)) +0p(1).

By Theorem 4 in Searle [11], the quadratic forifa,%?q,z anquﬂ},? are asymptotically inde-
pendent iV "M Z,6,)M" ;M| _1 = Oxxk. We have

-1/2 1/2
MM Zp00) MI_1Mi -1 =MD, g% (Ri = Ri41)Zp(a0) (Ri-1— RI)D oMy,

and sinceH; (80)R; (80) = O 1 1)xr,» We haveM "M Z, g\ M[_;M|_1 = Ok, because,
M|2p<eo)M|T—1 =K = Ki11Kj-1 =Ky +Ki11K) = Ok O

In general, theoretical results for the test statli&(lé(h under alternative hypotheses are
not easy to obtain. An exception to this is when there is a contiguous sequence of alternatives
that approach the null hypothesis, 1 at the rate oD (n~1/2).

Consider the multinomial probability vector

pn=p(6o) + \%, 0o <€ O 1 and 8y unknown (15)

wheres= (s, ... ,sk)T is a fixedk x 1 vector such thaz‘f:lsj =0, andn is the total-count
parameter of the multinomial distribution. As— o, the sequence of multinomial proba-
bilities {pn},cy cOnverges to a multinomial probability . ; at the rate oO(n‘l/z). We
call
S
Hit1n:Pn=p(B0)+ il 6o < ©.1 and B unknown (16)

a sequence afontiguous alternative hypotheségre contiguous to the null hypothebis ;.

Now consider testingdnun : Hi1 againstHay : Hi1 5, using the test statistrﬁqfl)q,z given

)

by (11). The power of this test igy’ = Pr(T( >¢ > ¢ | Hij1n). In what is to follow, we

show that under the alternativé 1, and asn — oo, T¢(1) converges in distribution to a
non-central chi-squared random variable with non- centrahty parametgherey is given
in Theorem3, ant| —t;, 1 —r; +r;1 degrees of freedor(ml Consequently,
asn — oo,

—t41-1 +f|+1~,u)

|
”’(1> - Pr(xﬂz—tl+1—f|+f|+1~,u > C)' 7

Theorem 3. Suppose thaiN, . .., Ny) is multinomially distributed according to the loglinear
model (3). The asymptotic distribution of the statls;j@ T, under the contiguous alternative

hypotheses (16), is chi-squared with-t) .1 — 1 +1141 &egrees of freedom and non-centrality
parameter

u=s" (XiHI(80)X] —Xi11H111(80)X[, 1) s
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Proof. By (14), we havél'qfl?q,z =Z[Z,+0p(1), where

Zi =D, g5 (R —Ri11) V(P —Pp(80)) = (Ki —Ki:1) D, g3 v/A (B~ p(8o))
andz, nAL—% N (ué'),ig)), being

| 1 ~1/2
"‘é) = Dp(O/o) (Ri—=Ri1)s= (K| —Kj11) Dp(l9/o>S

and

. B
28 = Dpige; (R = Ri+1) pieg) (R1 —Ri41) Dpp = Ki =K1,

The matring) (see i) and ii) in the previous theorem) is idempotent and symmetric and its
trace sty —tj 1 — 1 +r41.

We apply a lemma by Ferguson (cf. [4, p. 63]): “Suppose thats ﬂ(ug),zg)).
If Zg) is idempotent and:g)yg) = yg), the distribution on|TZ| is noncentral chi-square
with degrees of freedom equal to rank of the maﬁ& and noncentrality parametgr =

(ug))Tug)”. Therefore, the result follows if we establish ttﬁpug) = ug). Applying that
K| — K11 is an idempotent matrix, we have

/25— (K| —K;11)D

sVl = (K = K1) (K — Ki+1)Dpgq)

/2
D(ﬂo)s

Now we are going to get the noncentrality parameter,
(8T8 =" (XiHI(80)X] —Xi11Hi11(80)X 1) s
Now the result follows. O

Remarkl. Theorem 3 can be used to obtain an approximation to the power function of (7),
as follows. Write

p(87%) =p (87%,%) + \% (va(p(87%) -p (875%)))

and defingp, = p (a(i)l"pz) T ﬁ& where

s—va(p(7%) ~p(802%)).

Then substitute into the definition ofu and, finally,u into the right side of (17).
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