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ANALYSIS OF A CONSERVATION LAW
WITH SPACE-DISCONTINUOUS
ADVECTION FUNCTION

Julien Jimenez

Abstract. We consider the scalar conservation law in one space dimension:
dku+ dx(k(x)g(u)) =0, 1)

associated with a bounded initial valug

We suppose that the functidris bounded, discontinuousxa = 0, and has bounded
variations. Whelk is piecewise-constant, the definition of a weak entropy formulation for
the Cauchy problem has been introduced by J. D. Towers in [7]. In [6] the existence and
the uniqueness is proved by regularisation of the fundtioie generalize the definition
of J.D Towers and we adapt the method introduced in [6] to establish an existence and
uniqueness property in the case of the homogeneous Dirichlet problem for (1).
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81. Introduction

We are interested in the existence and uniqueness property for a scalar conservation law
made of an hyperbolic first-order equation in a one-dimensional bounded d@mginany
positive finiteT:

Jdu 4 .
3 kgu) =0 InQ=0x]oT],
u(0,x) = Up(x) onQ, 2
u=0 on a part of |0, T[ x 9Q,

wherek is a discontinuous function at a poixg of Q. Such an equation arises in the mod-
elling of continuous sedimentation of solid particles in a liquid or when one considers a
two-phase flow in an heterogeneous porous medium without capillarity effects ([3]).

By normalization, we suppoge =]—1,1].

The initial conditionugp belongs td_*(Q) and takes values i, 1].

The flux functiong is Lipschitzian on0, 1] with a constanMg, g > 0, g(0) =g(1) =0
and satisfies a nondegeneracy condition:

VaeR, {2 eR, d(A)=a}=0.



426 Julien Jimenez

The functionk is discontinuous aty = 0, k € W*+*(]—1,0[), k € W3+*(]0,1[). Thus,
we can define:
ke = lim Kk(x) and  kg= lim k(x).

x—0~ x—0t

The mathematical formulation for (2) is given in Section 2 through an entropy inequality
on the wholeQ using the classical Kruzkov entropy pairs and involving a term that takes into
account the jump ok along{xo = 0}. As soon as we are able to transcript the transmission
conditions along the interface included in this definition, we are can state, in Section 4, the
uniqueness. To do so we need strong traces fdong the interfacéxg = 0}.

§2. Definition of an entropy solution

We propose a definition extending that of J. D. Towers ([7]), also used by N. Seguin and
J. Vovelle ([6]) or F. Bachmann ([1]), to the case whkmepends on the space variable and
for the homogeneous Dirichlet problem in a bounded interv@l.0cfo we say that:

Definition 1. A functionu of L*(Q) is an entropy solution to (2) if:
() 0<ut,x)<1 ae onQ.

(i) vk €[0,1], Vo € 65°([0, T[xQ), ¢ >0,
/Q(|u(t,x)—K|¢t(t,x)+k(x)q>(u, K)gx(t, X)) dxdt
—/ k’(x)sign(u—ic)g(ic)(pdxdt—ir/ |up — x| (0,x) dx (3)
Q Q
+lk—kelg(e) [ o(t0)dt=0

where
®(u, k) = sign(u— x)(g(u) — g(x)).

(iii) for a.e.t €]0,T[, Vx € [0,1],

k(1) sign* (uf (t) — x)(g(ui(t) —g(x)) >0, (4)
k(—1)sign™ (U4 (t) — x)(g(u” 1 (t) — g(x)) <O. (5)

In this definitionuf andu” ; denote the traces ofrespectively in+-1 and—1 in the sense
of A. Vasseur [8] (see also Y. Panov [5]). Indeed it follows from [8]:

Lemma 1. Let u be an entropy solution to problem (2). IEg73(R) and if, ¥(«, B) # (0,0),
ZL{A|a+p.g(A)=0}) =0, there exists two functions_y in L*(]0, T[) such that, for
every compact set K 0, T|,

esslim/ |u(t,x) — u4 (t)|dt = 0.
x—+1 JK
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In [5] Panov proved the existence of these strong traces with a flux function only contin-
uous, depending also on the space variable.

Remarkl. Of course, the statement of Lemma 1 also ensures the existence of strong traces
foru, yu™ andyu~, in L*(]0, T|[) along{xo = 0}.

Remark2. The boundary conditions (4)—(5) can also be written:
fora.et€]0,T[, vk € [0,1],

k(1)(sign(ui(t) — k) +sign(x))(g(ui (t)) — g(x))
k(—1)(sign(uZ4(t) — x) +sign(k)) (g(u4(t)) — 9(x))

that are the classical boundary conditions of C. Bardos, A. Y. Leroux and J. C. Nedelec ([2]).

0,
0,

IN IV

83. Conditions at the interface{xo = 0}

Let us establish that the previous definition ensures the uniqueness. The proofis based on that
proposed in [6] and relies essentially on the transmission condition &@rg0} underlying
to entropy inequality (3). Indeed the existence of strong traces fi@rmits us to state first:

Lemma 2. Let u be an entropy solution to (2). So, foed €]0,T|, Vx € [0,1],
kL ®(yu (1), k) —kr®(yu™ (1), k) + [k — kel 9(x) > O. (6)

Proof. Let ¢ € €°(Q), ¢ > 0. We refer to the cut-off functiom,, € > 0, introduced in [6]:

0, if 2 < ||,
— 2 .

g (X) = M, if € <|x <2e,
1 if X <e,

such that, wheie — 0%, w:(x) — 0 ¥x € R*, andw:(0) = 1, Ve € R.. Thanks to a density
argument we may choosgmo, as test-function in (3). We pass to the limit whegoes to &

by using the Lebesgue dominated convergence Theorem providing that all the terms go to 0
except k. — kg|g(x) fOT ¢(t,0) dt (which does not depend &) and

Igf/k ®(u, k) o' dxdt

Indeed, by definition ofo,,

T1 2¢
le _/ ®(u,x (pdxdt+/ —7/ k(X)®(u, k) pdxdt
Becausab( ., ) is Lipschitzian on0, 1], and due to the definition &f , kg andyu—, yut,
T T
we show that fiml. = / k (U, k) dt — / k(U™ K) @t O
£— 0 JO

Now we highlight the fact that:
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Lemma 3. The inequality (6) is equivalent to two conditions:

(i) a Rankine-Hugoniot condition: for.e. t €0, T|,
keg(yu™ (1)) = krg(u™ (1)), (7)
(i) an entropy condition: for a.t € ]0,T| such thatyu (t) # yu' (t),
o if signiyu” (t) — yu™ (t)) = sign(k. — kg):

Vel ), (1), keP(yu'(t),x) <0, (8)
o if sign(yu (t) — yu*(t)) = —sign(k. —kr):
Vel ]y (), " ()], k®(n(t),x) >0, 9)

where lja, B[ is the open interval bounded layand 3.

84. The uniqueness theorem

We are now able to state an uniqueness property for (2) through a Lipschitzian dependence
in L! of a weak entropy solution with respect to corresponding initial data.

Theorem 4. Let u and v be two entropy solutions to (2) for initial conditiofus,Vo) €
(L"(]-1.1[;[0,1])). Then,

/ / [u(t,x) — v(t,x)|dxdt < T/ |uo(X) — Vo (X)| dx. (10)

Proof. First we state, by using the method of doubling variables (cf. [4]), for @rip
%< ([0, T[ x Q) vanishing in a neighborhood ¢k = 0}, the following Kruzkov inequality:

/Q(IUI(t X) = V(t, )| (t,x) + KO P(u(t, x), v(t, X)) x(t, X)) dxdt

+ [ 100~ vo(0)l9(0.x)dx > 0.
Q

Then for anyg in €°([0, T[ x Q), we can choose in (11) the test-functipfil — w; ), where
. is defined in the proof of Lemma 2. By taking thdimit, it comes

(11)

/(|u—v|(pt+k(x)¢(u,v)(px)dxdt+/ |ug — Vo|@(0,x)dx > J,
Q Q
with T

3= [ teou )~ ket W) p(t.0) .

Entropy and Rankine-Hugoniot conditions show thas nonnegative. Indeed let us study,
for a.e.t of |0, T|, the sign of

I = k|_‘-D('YU7, Wi) - qu)(Yu+7 WJr)
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We just focus on the case wheyut — yv) and u~ — yv~) have an opposite sign. Other-
wise due to (7)] = 0. When sigiyut — ) = —sign(yu~ —y~) # 0, by using (7), we
have

I =2k ®(yu=, ") = —2kgP(yu’, ).
Let's focus on the situatiompu™ < v~ andyv™ < yu™ (the other cases being similar).

o If um <y <wh <, thenyw andy' are in]Jyu—,yu[, so we can use the
entropy condition (8)—(9) (according to the signkpf- k) to havel > 0.

o If yum <yt <yut <y, thenyu™ —yu™ andyv— — y have an opposite sign. So
one of the two have the sign &f —kg. As yw € Jyu™,yut[ andyut € Jwt, w|,
using (8), we havé > 0.

o If wh <yu™ <yt <y or (Wwh <yt <yu <), thenyut andyu~ are in
Jyvt,yv~[. So as in the first situatioh,> 0.

Now, in order to prove (10), we may choose in (11), forx) € [0, T[ x Q, the test-
function, fore > 0,

@(t,x) = 0(t)0te (%),

where6 € ([0, T[), 6 > 0, ande, is an element 0%’ (Q) such thato, > 0, & =1 on
]—1+¢,1—¢land|o}| < 2. Soo — 1a.e onQ. We obtain, by taking the limit with respect
to e,

/|u—v|9’(t)dxdt+ / Iuo— Vo|6(0) dx
Q Jo

T T
2/0 k(l)d)(u{,v{)@(t)dt—/o K(—1)®(UF 1,v7 )0(t)dt.

By coming back to Definition 1 (iii), we remark that the boundary terms are nonnegative.
Indeed, fora.e. on]0, T,

e if UT > VI, we choosec = VZ in (4) for u” to obtain
k(L)®(ui(t),vi(t))o(t) = k(1)(g(ui(t)) —g(vi(t))o(t) = 0,
o if UT < VE, we choosex = u? in (4) for v* to obtain
k(L)®(ui(t),vi(t))o(t) = —k(1)(g(ui(t)) —g(vi(t))e(t) > 0.

Similarly,
k(—1)d(u*,,v",)6(t) <O0.
This way,
/ \u—v|61(t)dxdt+/ IUo — Vo|6(0)dx > 0.
JQ Ja

The conclusion follows with classical arguments which completes the proof of Theo-
rem 4. O
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85. Existence of an entropy solution

The proof relies on a suitable regularizatiqn € > 0, of the functiork and uses a compact-
ness argument for the sequer(&ed(u,, k))e~0, Whereu, is the weak entropy solution to
the corresponding mollified problem. To do so we need some additional hypotheses:

(H1) There existsq € [0,1] such that( ., k) is bijective.
(Hy) Z{xeR* k(x)=0}=0.
In this framework we establish that:
Theorem 5. Under (H;) and (H), the problem (2) admits at least one entropy solution u.

Proof. We suppose first that the initial conditiog is smooth.

First step: b € 6.°(Q)
We apply the method introduced in [6] (also used in [1]) that is to consider a seqiehcef
Lipschitzian functions such that, for every positi&eék, = k out of|—¢, €[ andk, is monotone
on [—¢, €] (depending on the sign & — kg). That implies:

VxeER, ke(x) = k(x) and [Ke|py(r) < [Klpv(r)-

Then we denote, the unique entropy solution (given by [3]) to the regularized problem:

e, 0

+ 5 (ke () g(ue

ot ox =0 onQ,

)
)=Us(x) onQ, (12)
u=0 on a part ofl0, T[ x Q.

When we look for some estimates far:)¢~0, we are able to state the following lemma
coming from [6].

Lemma 6.
(i) Fora.e(t,x)in Q,0<ug(t,x) <1.
(i) There exists a constant € 0, such that, for anx € [0, 1]:

ke (P(Ue, k))[Bv(Q) < C(lUolav(Q) + IKlBV(Q))-

Lemma 6 implies, by using (H and (H), that (ug).~0 tends to a limit denoted in
L(Q). Then we introduce the mollified entropy pair, for aqyn [0, 1] and any reat:

®y(7) :/’:signn(r—x)g’(r)dr and Iy (1) :/’:signn(r—K)dr,

where sigp denotes the Lipschitzian approximation of the function sign given for any posi-
tive n and any nonnegative reaby sign, (x) = min(x/n,1) and sign (—Xx) = —sign, (x).
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By coming back to the viscous problem related to (12), we establistuthaifills the
regularized entropy inequality for afl in €.°([0,T[ x Q),

/QIn(ug)(ptdxdt—k/le(x)dJn(ug)q)xdxdt

(13)
+ [ K00 1) =1 (we)g(ue)pdxctt [ 1y (u0)p(0.x)dx> 0.
We pass to the limit in (13) with respect¢do obtain
[ (1 (W) + K@ (W) dxdt [ K00y (1) = 17 (Wg(u) pdxl
JQ Q (14)

’
+ [ 1 (W)p(@xdx+ (g(x) + Camlke k| | p(t.0)dt>0.

whereCy = 2My. This way, the limit with respect tq provides (3)
To establish thatl satisfies (4)-(5), we refer to the viscous problem associated with (12)
and we make sure that for any positiyeand any positive,

/Q{ksdbﬁ(ug)(PxH;(ug)(Pt}dxdt

- (15)
+'/Q{<D;,*(us) 9(ue) signy (U — k) ke @ dxdt> 0,

where N N
Iy (&) = / signy (r — x)dr and @7 (1) :/ g'(r)signy (r —x)dr

Now we take thes-limit in (15) with the same arguments as those used to obtain (14) from
(13). It comes

Ik, — kgl (9(K) +1 cg)/ (t,0) dt+/{| (U)r + k7 (U) gy} dxclt

(16)
+/{¢+ (u) signy (u—x)}K'@dxdt> 0.

Then choosing appropriate test-functions in (16) and using the definitiah afdu® ;
yield to (4)-(5).

Second step: g L*(Q)

We use a mollification process to come back to the first step. Indeed we consider a sequence
(u)jen+ such thatu) € €5°(Q) and (u}) tends toug in L1(Q). We denoteu! the entropy
solution to (2) associated with the initial conditiug’y so that, for anyj, ul fulfills (14) and

(16). The comparison result (10) ensures hgy; is a Cauchy sequence irt(Q) so tends

to a limit, denotedi in L*(Q). Then, thej-limit in (14) and (16) ensures thatis an entropy
solution to (2). O
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