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AN OVERVIEW OF PROBABILITY MODELS FOR

STATISTICAL MODELLING OF COUNT DATA

S. Dossou-Gbété and D. Mizère

Abstract. The Poisson model is a benchmark model for the statistical analysis of the
count data. Sometimes count data exhibit variation, refered to as overdispersion or un-
derdispersion, resulting in the lack of fit of the Poisson model. The aim of this paper is
to present an overview of potential families of discrete probability distributions that can
provide alternative modelling framework for the statistical analysis of count data.

Keywords:Count data, Katz’s model, exponential dispersion family, Poisson model, Pois-
son mixture model, probabilities ratio recursion, statistical modelling, weigthed Poisson
model.

AMS classification:60-xx

§1. Introduction

One of the crucial question in statistical analysis of count data is how to formulate an ad-
equate probability model to describe observed variation of counts. The Poisson family of
discrete distributions is used as a benchmark for statistical analysis of count data. This family
made of distributions indexed by a positive parameter such the probability mass function is
defined asp(x,λ ) = e−λ λ x

x! , λ ∈ ]0,+∞[, x∈ N. It follows that this family of distributions
is a natural exponential family with canonical parameterθ = ln(λ ) and cumulant function
κ (θ) = exp(θ).

One of the important features of the Poisson family is that the variance-to-mean ratio,
also called Fisher dispersion index, is equal to 1 whatecer the value ofλ . Then, the Fisher
dispersion index of a counts probability distribution is considered as a measure of its depar-
ture from Poisson model. Notice that the case where the variance-to-mean ratio equals to
1 characterises the Poisson family among the natural exponential family of discrete distri-
butions. Overdispersion with respect to Poisson model (in short overdispersion) referes to
the cases where there is evidence that the observed random variation is greater than the ex-
pected random variation under the Poison model. Otherwise underdispersion means that the
expected variation is greater than the observed one. An other impotant feature of the Poisson
family is the equality1

λ
ln [p(0,λ )]+1 = 0 wherep(0,λ ) is the probability of zero. The in-

dexzi = 1
λ

ln [p(0,λ )]+1 , called zero inflation index, is also used as a measure of departure
from Poisson model. Therefore, many goodness-of-fit procedures for Poisson distribution are
built on the assessement of criteria based on one of these measures or both.

The reliance of the Poisson model on a single parameter results in a lack of flexibility
in its application. The lack of fit of the Poisson model is a frequent issue in the count data
analysis literature as a survey can show. This results in proposals of alternative statistical
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analysis framework that take into account the knowledge on random mechanism underlying
the occurences of the counted events. But one has to notice that more attention has been paid
to overdispersion.

The Negative binomial distribution is one of the most widely used distributions when
modelling count data that exhibit variation that Poisson distribution cannot explain. This
distribution arises from various random scenarios ([12]) but it can be used only to model data
that show overdispersion. Nevertheless some recent works focused on applications where
count data exhibited underdispersed empirical distribution ([3, 27]).

This paper concentrates on providing an expository review of different approaches, old
and recent, that are used to underpin the statistical modelling and analysis of count data. Cor-
nerstones of these approaches include birth process modelling ([6, 28]), variance modelling
as function of the mean assuming that the distribution belongs to an exponential dispersion
family ([9, 17]), mixing Poisson distributions ([10, 28]), successive probabilities ratio mod-
elling ([15, 23, 26, 5]) and modifying Poisson distribution by weighting ([21, 22, 18]).

§2. Modelling birth rate for birth processes

Count data are realizations of counting processes, as collection of numbers of events occuring
in non overlaping periods of time of the same length. Assuming that events occur according to
a random process that obeys the following rule:P(N(t +h) = y+1 | N(t) = y) = λh+o(h),
P(N(t +h) = y | N(t) = y) = 1−λh+o(h), whereN(u) denotes the number of events oc-
curence during the time interval]0, u[ andλ is the conditional occurence rate (birth rate).
Prior knowledge or assumption on this occurence process can be expressed througthλ by
describing it as a random variable or as a non random function of total number of past oc-
curences, parametric or nonparametric.

2.1. Modelling birth rate as state-dependent non random function

The Poisson model is equivalent to a Poisson process, that is the conditional occurence rate
λ is constant independently of occurence of events up tot. One can relax this constraint by
allowing the conditional occurence rateλ to be state-dependent, that means a function of
N(t). This approach has been studied in [6] and improved later [7]. It was proved in [2],
according to a conjecture in [6] that whenλ is modelled as an increasing function ofN(t),
the counting process results in a family of overdispersed counts distributions. Modellingλ as
a decreasing function ofN(t) leads to a family of underdispersed counts distributions. Con-
tinuing on this way, a parametric framework was proposed in [27] by modelling the birth rate
asλ = a(b+N(t))c with a > 0, b > 0 andc≤ 1. This class of models encompasses popu-
lar distributions models as the Poisson model whenc = 0 and the negative binomial models
if c = 1. One can readily show that the constraintc > 0 gives overdispersed counts distri-
butions while the constraintc < 0, leads to underdispersed counts probability distributions.
Recently a new class of models has been proposed in [8] to deal specifically with situation
where there is evidence of underdispersion; it is based on the modelling of the birth rate as
λ = a(b+exp(cln(N(t))−d)).
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2.2. Poisson mixtures: handling overdispersion by modelling birth rate
as random variable

When data on hand shows a variance that significativly dominates the mean there is evidence
that the assumption of constant birth rate is not realistic, since one should expect there is no
significant difference between the variance and the mean. An alternative method to deal with
this overdispersion is to consider a Poisson mixture models which results in modelling the
birth rateλ as a random variable with support]0,+∞[. By doing so one can take into account
the heterogeneity in the occurence of events generated by the birth process underlying the
counts. Assuming that the random variableλ is distributed according to the probability law
H, the probability mass function of the sampling distribution of the counts has the form

p(x) =
∫ +∞

0

1
x!

λ
xe−Λ dH (λ ) .

It is well-known that the specification of the mixing distribution is crucial in this approach.
This may be done through a parametric modelling of the distribution as in [10, 28] or non-
parametrically as suggested in [13]. Notice that some special mixing distributions models
lead to well-known sampling distributions for the count. As an example, if the mixing dis-
tribution belongs to the Gamma family, the sampling distribution belongs to the negative
binomial model. One of the drawback of the parametric modelling is that it is usually mo-
tivated by mathematical convenience (one can deal easily with the statistical inference) and
computational issues.

§3. Exponential dispersion families and the variance modelling as
function of the mean

Exponential dispersion families of discrete probability distributions have proved to be an
appropriate distributional framework when dealing with generalized linear model (glm) [20]
for count data regression analysis. Negative binomial family is an exponential dispersion
family. A count probability distribution belongs to an exponential dispersion family if its
probability mass function is of the formp(x) = c(x,φ)exp(θx−φκ (θ)), x∈N ([14]) where
θ ∈ Θ ⊂ R is the canonical parameter,φ ∈ Φ ⊂ ]0,+∞[ is the dispersion parameter andκ

is the cumulant function. Letm andσ2 denote respectively the mean and the variance of a
discrete probability distribution belonging to an exponential dispersion family. One proves
thatm= φdκ (θ)/dθ andσ2 = φd2κ (θ)/dθ 2 = dm/dθ and then one can write the variance
as a function of the meanσ2 = φV(m/φ), whereV is named unit variance function.

It appears that modelling the varianceσ2 as a function of the mean may provide a gateway
toward a probability distribution model building. An example of unit variance function is the
functionV (µ) = µ + µ p with p≥ 2, considered by Hinde J. and Demétrio C. G. B in [9] in
the framework of quasi-likelihood inference for fitting overdispersed count data. Kokonendji
C. C. and al. proves in [16] that for the indexp fixed in the interval[2,+∞[, this function is
the unit variance function of an exponential dispersion family. These probability distributions
have support setS= N+ pN and then only integer values have to be considered for the index
p when dealing with count data.p = 2 yields the negative binomial model, andp = 3, the
strict arcsine model ([17]).
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§4. Probabilities ratio recursion approach

A family pϑ of count probability distributions{p(x,ϑ) , x∈ N} is completly specified by
the recursion formula 

p(0;ϑ) 6= 0 x = 0,

p(x;ϑ)
p(x−1;ϑ)

= f (x,ϑ) x≥ 1,

where f is a specified function ofx ∈ N andϑ is a vector of numeric parameters. Several
types of functions have been studied resulting in classes of discrete probability distributions
that include Poisson family as a special case. Among them are Katz’s recursion and its various
extensions ([5, 23, 26, 29]).

4.1. Basic Katz’s recursion

The basic Katz’s recursion [15] is defined as follows:f (x,α,λ ) = α +λ/x, for x≥ 1. When
α ∈ ]0,1[ andλ > 0, this ratio yields the negative binomial model withα the probability
of failure andφ = 1+ λ/α the dispersion parameter; whenα ∈ ]0,1[ andλ = 0, it yields
the geometric model withα the probability of failure, whenα = 0 andλ > 0, it yields
the Poisson model of parameterλ and whenα < 0, it yields the binomial modelB(n, p)
with p = −α/(1−α) the probability of success and−λ/α = n+ 1, n ∈ N∗. Notice that
Katz’s recursion leads to Poisson distribution or two parameters models for counts probability
distribution as well. Several extensions of Katz’s recursion have been proposed to enlarge the
hierachy of models available for modelling and analysing count data.

4.2. Lerch family

The Lerch family has been introduced by in [19] as revisiting Good distribution, motivated by
the modelling of non zero counts data arising in ecology. The proposal results in a successive
probability ratio model of the following form:

f (x,α,β ,ν) = α

(
1− 1

β +x

)ν

,

whereα ∈ ]0,1[, β > 0 andν 6= 0. This models proves its ability to fit data for which the
observed variation could be significatively greater than the mean, less than the mean or equal
to the mean. Further statistical and probabilistics properties of this model is studied in [1]
where the support of the counts distribution is taken as the set of the non negative integerN.

4.3. Revival of Conway-Maxwell class

The Conway-Maxwell class of discrete probability distributions is defined by modelling the
consecutive probabilites ratios as follows:

f (x,α,λ ,ν) = α +
λ

xν
, x∈ N?,
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whereα, λ , ν are numeric parameters such thatα ∈ ]0, 1[, λ ∈ R andν > 0. Shmueli et al.
studied in [26] the statistical and the probabilitics properties of the distributions arising from
this model whenα = 0 andλ > 0. This family of discrete distributions, named Conway-
Maxwell-Poisson distributions (in short COM-Poisson), is discussed as a two-parameter ex-
tention of Poisson family that generalizes well-known family (Poisson, Benouilli, Geomet-
ric). Its also leads to the generalisation of distributions derived these families as Binomial and
Negative Binomial. Further results were obtained in [5] where the general case of this model
is studied as extention of Conway-Maxwell distributions. This class of distributions proves
to encompass probability distributions for which the variance-to-mean ratio is greater than 1,
less than 1 or equal to 1. Then the family have more flexibility to fit count data generated by
various random mechanisms.

§5. Modifying Poisson distributions by weighting

Modifying Poisson distribution by weighting is an other approach for the building of dis-
crete probability distributions that can account for overdispersion and under-dispersion. One
motivation of this approach is that the countx could be recorded with a probability propor-
tionally to some functionw(x) (cf. [12, 22]). Then the countx is the realization of a sampling
distribution called the weighted version of the Poisson distribution and its probability mass
function is defined as

Pw (x,λ ) =
w(x)
Eλ [w]

λ x

x!
e−λ , x∈ N, λ > 0,

where

Eλ [w] = e−λ
+∞

∑
s=0

w(x)
λ s

s!
< ∞

is the normalization constant andw(x) the weighting function. The choice of this weight-
ing function is an important step of this method. The weighting function could be specified
through a parametric models or non parametrically. One should have in mind that it is not
an easy task to choose a parametric model for the weighting function. Very often the choice
is guided by mathematical convenience and computational issues. A well-known weighted
Poisson distribution is the size-biased Poisson distribution ([21]) which corresponds to the
weighting functionw(x) = x. The class of Poisson distributions modified by weighting with
the functionsw(x,α, r) = (x+α)r has been studied in [4]. More recently, Kokonendji C.C.
and Mizère D. studied in [18] general properties of these classes of distributions in the per-
spective of fitting count data that exhibit over-dispersion or under dispersion. It is proved that
a Poisson distribution modified by weighting with a functionw(x) is over-dispersed (resp.
under-dispersed) if the functionλ 7−→Eλ [w] is log-convex (resp. log-concave). Furthermore
the weighted Poisson distribution is over-dispersed (resp. under-dispersed) if the weighting
functionw is log convex (resp. log-concave) as function of countsx.

The concept of the dual weighted Poisson distributions was introduced in [18] in order to
prove that the class of the distributions obtained by weighting Poisson distributions is flexible
in the sense it encompasses distributions that can account for over-dispersion as well as under
dispersion.
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Definition 1. Two weighting functionw1 (x) and w2 (x) leads to a dual pair of weighted
Poisson distributions if they satisfy the following condition:w1 (x)w2 (x) = 1,∀x∈ N.

The following result holds [18]:

Proposition 1.

(i) Let’s consider the Poisson distribution with meanλ and a weighting function w such

lim
y→+∞

w(x−1)
xw(x)

=
c0

λ

for some c0 ∈ ]0, 1[. Then the weighted version of this Poisson distribution obtained by
weighting by w admits a dual distribution.

(ii) Let’s consider a dual pair of two weighted Poisson distributions with weighting func-
tions wi , i = 1, 2. If one of the weighting functions wi is log-convex (or log concave)
then this pair is constituted of an over-dispersed and an under-dispersed counts distri-
bution.

As an example, a dual pair of weighted Poisson distributions is obtained by weighting
a Poisson distribution with the functionsw1 (x) = (x+α)r and w2 (x) = (y+α)−r where
α > 0, r ≥ 0.

§6. Concluding comments and miscellaneous

The Poisson distribution and the Negative binomial distribution are the most widely used
discrete probability distributions for the analysis of count data. But survey can show they
demonstrate limitations since in many applications the shape of the empirical distribution
of data is significantly different of the expected shape from Poisson and Negative Binomial
models. Although our presentation is limited to the framework of parametric models its does
not cover all of the modelling proposal that can be encountered in the huge literature on
count data analysis. By modelling the successive probability ratio, Pestana D. D. and Velosa
S. F. have constructed a wide class of discrete probability distributions indexed with three
parameters that encompasses Poisson stopped sums and Geometric stopped sums ([23]). Puig
J. and co-authors studied count distributions modelled by two parameters, the mean and the
Fisher dispersion index, for the analysis of over-dispersed count data [24, 25]. However, the
present paper proves that it is possible to obtain flexible parametric models that can account
for over-dispersion, under-dispersion as well as equidispersion, depending on the value of
some model parameters. Such discrete probability models can be used for applications in
various domains as ecology, linguistics, information sciences, statistical physics, etc.
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