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AN MM-ALGORITHM FOR A CLASS OF
OVERDISPERSED REGRESSION MODELS

S. Dossou-Gbété, C. Demétrio and C. C. Kokonend;i

Abstract. The aim of the paper is to provide an algorithm for the computation of the
regression parameters estimation in the framework of generalized linear model for count
data. Regression parameters are estimated through the minimization of the quasi-likeli-
hood and the main feature of that algorithm, which relies on MM method, is not to resort
to matrix inversion as in Newton-Raphson algorithm and Fisher-Scoring method.
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81. Introduction

The Poisson models is a linchpin in the count data statistical modelling toolkit. If the counts
are observed along with covariates, the generalized linear models is in the core of the mod-
elization of the expected counts with respect to the covariates. The main property of the
Poisson distributions is the equality of their means to their variances. It characterizes the
Poisson family of discrete distributions amongst the exponential families of count distribu-
tions. It frequently occurs Poisson models are not able to handle the variability demonstrated
by the data in hand. There are several ways to overcome the lack of fit of the Poisson models.
One of them is to use the negative binomial models when there is evidence of overdispersion.
The negative binomial models is generally stated by postulating the distribution vagance
is a quadratic function of its mean, expressed as? = m+ +n?. An alternative way to
handle the negative binomial model is through a linear relationship between the variance and
the mears? = gu whereg is the Fisher index of dispersion [2, 7].

We consider in this paper an alternative to the negative binomial models, when the quadra-
tic function of the mean is not compatible with the variability shown by the data.

§2. Hinde-Demétrio models for overdispersed count data

2.1. The Hinde-Demétrio models for count data ([5])

Let’s consider the functiol, defined agt — V(1) = p+ 1P and indexed by > 1. Itis
shown in [9] that for eaclp > 1, the functionv,, is the unit variance function of an additive
exponential dispersion model ([8]), named Hinde-Demétrio model in [9], with suSgett
N+ pN. A probability distribution belonging in a Hinde-Demétrio model indexed by spme



230 S. Dossou-Gbété, C. Demétrio and C. C. Kokonendji

is characterized by its mean valoe> 0 and a dispersion parametgin such a way that its
varianceo? is linked to the mean by the relation

6% =m+ oL PP = ¢vp($>. )

2.2. The quasi-likelihood for Hinde-Demétrio models

The quasi-likelihood of the meam and the dispersion parametgmwith respect to a distri-
bution belonging in a Hinde-Demétrio model indexedpig defined as

y

m 7_V LLLES A —
Qo(m o |y) = —¢/ o dv=- [ 7 2 v
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A simple algebra yields to

y 1 dv+¢/$1dv
9 % v+ VP ¥ 1+vp-1
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This result allows to state that:

Qp(Mm ¢ |y) =

Lemma 1.

dv.

Qp(m7¢ |y) = 1+ vl

1-pyp-1)~ o1 .m
Yin m(1+ ¢+ PmP-1) : o
O [ y(a+grrypt) e :

Moreover Q is a convex positive function on the means domain of the Hinde-Demeétrio mo-
dels and

R 1+ 1-pmp—1 % m 1
Qp<m,¢y>=Qp(m,¢|y>—gln[< - )11]+¢/$‘”1+Vp_1dv

M(1+¢1-PmP-1)
By noticing that1 1 < vP — forv> 0 andx— In(x) is a concave function oj®, + oo,
one can readily show the lemma below.

Lemma 2. Let p> 2. For any m andn belonging in the means domain of the Hinde-Demétrio
models

yo~ p{M} ¢1 p[rnz P_ /P p]
11 glpmpT 2-p ‘

Qp(m ¢ |y) < Qp(M ¢ |y) —%In (%) T
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83. Estimation method for the generalized linear models

3.1. Generalized linear regression models

Lety;, i =1:n, are count data where each respoyse observed along with a vectgr =
(Xij)j=1x of k covariates values. We assume that the responses are realisations of independant
random variables distributed according to distribution from the same Hinde-Demétrio model
with known index parametep and unknown dispersion parameter Conditionaly to the
covariates vectox;, the mean of the distribution underlying to the respopse related tax
as a functiormi(x;, B) wheref is a vector ok unkown parameters.

In the generalized linear models framework it is assumed that there is a injective function
g, defined on the means domain of the distributions underlying the the resppsseh that

k
9(mx. ) = 3 %if ="'%p.
J:

Since the responsgsare modelled by means of distributions belonging in a Hinde-Demetrio
family indexed by fixedp with the same dispersion parameterthe quasi-likelihood of the
unknown model parametegsandp;, j = 1 :k, with respect to the dafy;, X)), i=1:n, is

Qo(B.0 101,00, 1 =1:0)) = 5 Qolmix.B). )

For an exponential dispersion family of distributions, the minimization of the quasi-likelihood
results in the maximization of the log-likelihood. As a consequence of what come above, the
guasi-likelihood can be computed without the explicit knowledge of the cumulant function
of the Hinde-Demétrio exponential dispersion models. Then a tentative algorithm for the
estimation of the mearns and the dispersion parameteis as follows:

Algorithm 1. General procedure for regression parameters estimation.
Repeat until convergence within a numerical tolerance:

1. Hold ¢ fixed.
Minimize Qp(B,¢ | {(¥i,x), i=1:n}).

n
; (i =m(x,B))? _ i
2. Solve the moment equatlog\m()q713)“1)1,[)["1()(4mp = degree of freedom with respect
to ¢.

End(Repeat)

Using a surrogate objective function at the place of the actual function to optimize proves
to be a convenient gateway on the route of designing algorithms, efficient and easy to im-
plement ([1]). Such surrogate objective functions are sometime called auxiliary functions
([4]). Since auxiliary functions will play a key role in solving the minimization of the quasi-
likelihoods that we are dealing with in this paper, let's introduce to basic properties of such
functions.
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3.2. Introducing to function optimization with auxiliary functions

Definition 1. LetL denote a function on a domai#i” C RP. An auxiliary functionfor L is a
functionA defined on2” x 2~ for which the following properties hold:

(i) vx, X € 27, L(x) —L(X) <A(x, X),
(i) vxe 27, Ax, x) =0.

Although the auxiliary functions can be defined in many different ways, what should be
beared in mind is that they define pointwise upper-bounds of the gap between two values of
the functionL. Given a value!, if one can find a valug such thatA(x, x') < 0 thenL(x) <
L(x') and a sequence could be carried out, a cluster point of which might be a stationary point
for the functionL.

Lemma 3. Let A be an auxiliary function for L ande 2. If, forallx € 27, A(x, X) >0
and A is differentiable in a neighbourhoodﬁﬂhen%—ﬁ(x, X)|x=% = 0.

Proof. SinceA(X, X) =0 and,vx € 27, A(x, X) > 0, thenxX'=argmin{A(x, X), x€ £} and
the lemma holds. O

Proposition 4. Let A be an auxiliary function for the function L and Ig¢ ):;cy denote a
sequence such thatx = argmirfA(x, %), X € 2Z'}. The sequencél(X)}ien iS @ non

increasing one. Furthermore, if A is differentiable in a neighbourhood of a cluster Raifit
the sequencex )ien, 22 (x,%)|x—x = 0.

Proof. 0 = A%, %) > A(X+1, %) > L(%+1) — L(%), then{L(%)}ten is @ non increasing
sequence.

LetX be a cluster point of the sequenoe)ien. A(X, %) > A(%+1, %) > L(%+1) —L(%).
Taking the limits and applying the continuity of the functidnandAx(u) = A(x, u) leads to
A(x, X) > 0 andX=argminfA(x, X), xe 2"}. O

Corollary 5. Let (% )ten denote a sequence such thatix=argminfA(x, %), xe 2" }. If A
is differentiable and

oA L

X(val) =0= 5(") =0,

x=x x=x

then any cluster point of (X )icn is a stationnary of the function L.

Proof. The proof of the statement comes out readily from the fact Qﬁax, R)|x=x = 0=
oL L
X x=2=0 O]

As a consequence of the above corollayy; = argmin{A(x, %), X € 2"} might give an
appropriate update rule as the core of some minimization algorithm of the furictidote
that the proposition 4. remains true as well as corollary 5. if one considers a se@xénee
such thatA(x.+1,%) < 0 instead of_1 = argminfA(X, %), X€ 2 }.
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3.3. Generalized linear regression with concave link function and Hinde
Demétrio models

Let’s assume the link functiog is concave with values iR. Then its reciprocah = g1 is

a convex function and this yields that the functighs- “‘(t’;ﬁf)]lﬂ andp — —In(h(*xB)) are

convex functions on the parameters doniafn

k
Lemma 6. Let (oj)j—1x be a vector inRK with positive entries such thaZaj =1and
J:

~ o~

B = (Bj),_1, € R Then,

By invoking the concavity of the function— ¥
forward.

z—p, the forthcoming lemma is straight-

Lemma?.

Qo(B,6 | {(:%) i =1:n}) < Qp(B.¢ | {(yi, %) i = 1:n})+,_§lAp,i (B.B).

yi¢ P K Xij p-1
+1+¢1p[m(m,ﬁ)]l_plzp—l{h{al (5 [3’)+X'ﬁ}] 1
B yi¢—p [m Xin\ 1-p

1+¢1*p[m(xi,ﬁ)]lfp p—

+02Pm(x,B)]" S % (B By)-

=~
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~. n ~
Proposition 8. Ap(B,B) = ZADJ (B,B) is an auxiliary function for the minimization of

Qp(ﬁad’)

One can notice that the parametg@ss j = 1 : k, are separated in the functiég. This
makes the minimization oA, with respect tqQ3 easy to carry out, without matrix inversion.
What comes before suggests that the regression pararfete® and¢ > 0 could be com-
puted by running the following algorithm:

Algorithm 2. Algorithm for generalized linear regression parameters estimation in case of
Hinde-Demétrio models.

Repeat until convergence within a numerical tolerance:

1. Hold ¢ fixed.
Repeat until convergence within a numerical tolerance:

Solve %5 2 (B, B)=0, j=1:k
End(Repeat)

d htx)”
2. Solve the moment equanoE1 (v
h(1%B)+o1p[n(xB)]

to¢

End(Repeat)

» = degree of freedom with respect

3.3.1. Solving the system of equati(%%ﬂ ([3,[5) =0,j=1:k

One can easily show that

A o1 X.,h’{‘xlﬁ} N yio Py {tx B Yh{t%B}" 2
3[3]. (ﬁ ﬁ ’ﬁ ﬁ (P Zi {txlﬁ} Zi l+¢17p[m(xi,ﬁ)]l—l3
#0170 i )]
and
PPy o LEIWE h”{txlﬁ}h{txlﬁ} 12y [h{xB}]°
Al D N T T L P AT T i

L 207G W {xBin(xB}” ?
T
+(p-2) iWP PxG h/{txﬁ}] h{tx.[i}p 3

a1 galmix )|
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One can solve the equatit%%p(ﬁ,ﬁ) = 0 by using the the following update rule
o5 BB,

Ay, &
75 BB, 5

Brov— B+

3.3.2. Log-linear regression with Hinde-Demétrio models

We will focus in this section on thkeg link function. Then, it comes that

aAD Xi p )]
2B (ﬁ [3 ‘ ZY| ij o~ ZMNJ ¢1 p (X. B)]
+¢1‘p_;[m(xa,6)] P
and
9?A 0 yg [m(x.B)]"

7 (8.B)|, ;= (=19~ zla” s o Pl B

The computation of the regression parameters is achieved by means of the algorithm
below:

Algorithm 3. Algorithm for log-linear regression with Hinde-Demétrio models
Repeat until convergence within a numerical tolerance:

1. Hold ¢ fixed.

Repeat until convergence within a numerical tolerance:

o [m(eB)]"”
Ziy'X”JF(P ZYI ij ol p[ (Xqﬁ)] —p
g wd _[eB)]”

(P2 i; z rroplm(xf)] "

ﬁnew ﬁ]

End(Repeat)

2. Solve the moment equatio n ( eXp( ﬁ)) = degree of freedom with re-
: Qa0 B ) o Plon(wp)]” 0
spect tog.

End(Repeat)
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84. Concluding remarks

The use of surrogate objective functions for the optimization of loss functions is gaining in-
terest in computational statistics, extending the EM algorithms that are very popular for miss-
ing data problems. This paper aims to emphasis this trend by proposing some computation
schemes in the framework of the regression analysis of count data that can help to avoid bur-
den of computation in the regression parameters estimation. This preliminary work should
be completed by the study of the rates of convergence of the algorithms and the statistical
performances of the parameters estimation.
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