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AN MM-ALGORITHM FOR A CLASS OF

OVERDISPERSED REGRESSION MODELS

S. Dossou-Gbété, C. Demétrio and C. C. Kokonendji

Abstract. The aim of the paper is to provide an algorithm for the computation of the
regression parameters estimation in the framework of generalized linear model for count
data. Regression parameters are estimated through the minimization of the quasi-likeli-
hood and the main feature of that algorithm, which relies on MM method, is not to resort
to matrix inversion as in Newton-Raphson algorithm and Fisher-Scoring method.

Keywords:Count data, exponential dispersion models, Hinde-Demétrio models, general-
ized linear model, minimization, quasi-likelihood, auxiliary function, MM-algorithm.

§1. Introduction

The Poisson models is a linchpin in the count data statistical modelling toolkit. If the counts
are observed along with covariates, the generalized linear models is in the core of the mod-
elization of the expected counts with respect to the covariates. The main property of the
Poisson distributions is the equality of their means to their variances. It characterizes the
Poisson family of discrete distributions amongst the exponential families of count distribu-
tions. It frequently occurs Poisson models are not able to handle the variability demonstrated
by the data in hand. There are several ways to overcome the lack of fit of the Poisson models.
One of them is to use the negative binomial models when there is evidence of overdispersion.
The negative binomial models is generally stated by postulating the distribution varianceσ2

is a quadratic function of its meanm, expressed asσ2 = m+ 1
φ

m2. An alternative way to
handle the negative binomial model is through a linear relationship between the variance and
the meanσ2 = ϕµ whereϕ is the Fisher index of dispersion [2, 7].

We consider in this paper an alternative to the negative binomial models, when the quadra-
tic function of the mean is not compatible with the variability shown by the data.

§2. Hinde-Demétrio models for overdispersed count data

2.1. The Hinde-Demétrio models for count data ([5])

Let’s consider the functionVp defined asµ 7→Vp(µ) = µ + µ p and indexed byp≥ 1. It is
shown in [9] that for eachp≥ 1, the functionVp is the unit variance function of an additive
exponential dispersion model ([8]), named Hinde-Demétrio model in [9], with supportSp =
N+ pN. A probability distribution belonging in a Hinde-Demétrio model indexed by somep
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is characterized by its mean valuem> 0 and a dispersion parameterφ in such a way that its
varianceσ2 is linked to the mean by the relation

σ
2 = m+φ

1−pmp = φVp

(
m
φ

)
. (1)

2.2. The quasi-likelihood for Hinde-Demétrio models

The quasi-likelihood of the meanm and the dispersion parameterφ with respect to a distri-
bution belonging in a Hinde-Demétrio model indexed byp is defined as

Qp(m,φ | y) =−
∫ m

y

y−u
u+φ1−pup du.

This results in the equation below

Qp(m,φ | y) =−φ

∫ m
φ

y
φ

y
φ
−v

φVp(v)
dv=−

∫ m
φ

y
φ

y
φ
−v

v+vp dv.

A simple algebra yields to

Qp(m,φ | y) =− y
φ

∫ m
φ

y
φ

1
v+vp dv+φ

∫ m
φ

y
φ

1
1+vp−1 dv

= − y
φ

{
ln

[
m+φ1−pmp

y+φ1−pyp

]
− ln

[
φ p−1 +mp−1

φ p−1 +yp−1

] p
p−1
}

+φ

∫ m
φ

y
φ

1
1+vp−1 dv.

This result allows to state that:

Lemma 1.

Qp(m,φ | y) =− y
φ

ln

m
(
1+φ1−pmp−1

)− 1
p−1

y(1+φ1−pyp−1)−
1

p−1

+φ

∫ m
φ

y
φ

1
1+vp−1 dv.

Moreover Qp is a convex positive function on the means domain of the Hinde-Demétrio mo-
dels and

Qp(m,φ | y) = Qp(m̂,φ | y)− y
φ

ln

m
(
1+φ1−pmp−1

)− 1
p−1

m̂(1+φ1−pm̂p−1)−
1

p−1

+φ

∫ m
φ

m̂
φ

1
1+vp−1 dv.

By noticing that 1
1+vp−1 ≤ 1

vp−1 for v> 0 andx 7→ ln(x) is a concave function on[0, +∞[,
one can readily show the lemma below.

Lemma 2. Let p≥2. For any m and̂m belonging in the means domain of the Hinde-Demétrio
models

Qp(m,φ | y)≤Qp(m̂,φ | y)− y
φ

ln
(m

m̂

)
+

yφ−p
[

mp−1−m̂p−1

p−1

]
1+φ1−pm̂p−1 +

φ1−p
[
m2−p− m̂2−p

]
2− p

.
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§3. Estimation method for the generalized linear models

3.1. Generalized linear regression models

Let yi , i = 1 : n, are count data where each responseyi is observed along with a vectorxi =
(xi j ) j=1:k of k covariates values. We assume that the responses are realisations of independant
random variables distributed according to distribution from the same Hinde-Demétrio model
with known index parameterp and unknown dispersion parameterφ . Conditionaly to the
covariates vectorxi , the mean of the distribution underlying to the responseyi is related toxi

as a functionmi(xi ,β ) whereβ is a vector ofk unkown parameters.
In the generalized linear models framework it is assumed that there is a injective function

g, defined on the means domain of the distributions underlying the the responseyi , such that

g(m(xi ,β )) =
k

∑
j=1

xi j β j = txiβ .

Since the responsesyi are modelled by means of distributions belonging in a Hinde-Demetrio
family indexed by fixedp with the same dispersion parameterφ , the quasi-likelihood of the
unknown model parametersφ andβ j , j = 1 : k, with respect to the data(yi , xi), i = 1 : n, is

Qp
(
β ,φ | {(yi ,xi), i = 1 : n}

)
=

n

∑
i=1

Qp(m(xi ,β ),φ | yi).

For an exponential dispersion family of distributions, the minimization of the quasi-likelihood
results in the maximization of the log-likelihood. As a consequence of what come above, the
quasi-likelihood can be computed without the explicit knowledge of the cumulant function
of the Hinde-Demétrio exponential dispersion models. Then a tentative algorithm for the
estimation of the meansmi and the dispersion parameterφ is as follows:

Algorithm 1. General procedure for regression parameters estimation.

Repeat until convergence within a numerical tolerance:

1. Hold φ fixed.
Minimize Qp

(
β ,φ | {(yi ,xi), i = 1 : n}

)
.

2. Solve the moment equation
n

∑
i=1

(yi−m(xi ,β ))2

m(xi ,β )+φ1−p[m(xi ,β )]p = degree of freedom with respect

to φ .

End(Repeat)

Using a surrogate objective function at the place of the actual function to optimize proves
to be a convenient gateway on the route of designing algorithms, efficient and easy to im-
plement ([1]). Such surrogate objective functions are sometime called auxiliary functions
([4]). Since auxiliary functions will play a key role in solving the minimization of the quasi-
likelihoods that we are dealing with in this paper, let’s introduce to basic properties of such
functions.
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3.2. Introducing to function optimization with auxiliary functions

Definition 1. Let L denote a function on a domainX ⊂Rp. An auxiliary functionfor L is a
functionA defined onX ×X for which the following properties hold:

(i) ∀x, x′ ∈X , L(x)−L(x′)≤ A(x, x′),

(ii) ∀x∈X , A(x, x) = 0.

Although the auxiliary functions can be defined in many different ways, what should be
beared in mind is that they define pointwise upper-bounds of the gap between two values of
the functionL. Given a valuex′, if one can find a valuex such thatA(x, x′)≤ 0 thenL(x)≤
L(x′) and a sequence could be carried out, a cluster point of which might be a stationary point
for the functionL.

Lemma 3. Let A be an auxiliary function for L and̂x∈X . If, for all x ∈X , A(x, x̂) ≥ 0
and A is differentiable in a neighbourhood ofx̂, then∂A

∂x (x, x̂)|x=x̂ = 0.

Proof. SinceA(x̂, x̂) = 0 and,∀x∈X , A(x, x̂)≥ 0, then ˆx = argmin{A(x, x̂), x∈X } and
the lemma holds.

Proposition 4. Let A be an auxiliary function for the function L and let(xt)t∈N denote a
sequence such that xt+1 = argmin{A(x, xt), x ∈ X }. The sequence{L(xt)}t∈N is a non
increasing one. Furthermore, if A is differentiable in a neighbourhood of a cluster pointx̂ of
the sequence(xt)t∈N, ∂A

∂x (x, x̂)|x=x̂ = 0.

Proof. 0 = A(xt , xt) ≥ A(xt+1, xt) ≥ L(xt+1)− L(xt), then{L(xt)}t∈N is a non increasing
sequence.

Let x̃ be a cluster point of the sequence(xt)t∈N. A(x, xt)≥ A(xt+1, xt)≥ L(xt+1)−L(xt).
Taking the limits and applying the continuity of the functionsL andAx(u) = A(x, u) leads to
A(x, x̂)≥ 0 andx̂ = argmin{A(x, x̂), x∈X }.

Corollary 5. Let (xt)t∈N denote a sequence such that xt+1 = argmin{A(x, xt), x∈X }. If A
is differentiable and

∂A
∂x

(x,x′)
∣∣∣
x=x′

= 0 =⇒ ∂L
∂x

(x)
∣∣∣
x=x′

= 0,

then any cluster point̂x of (xt)t∈N is a stationnary of the function L.

Proof. The proof of the statement comes out readily from the fact that∂A
∂x (x, x̂)|x=x̂ = 0⇒

∂L
∂x (x)|x=x̂ = 0

As a consequence of the above corollary,xt+1 = argmin{A(x, xt), x∈X }might give an
appropriate update rule as the core of some minimization algorithm of the functionL. Note
that the proposition 4. remains true as well as corollary 5. if one considers a sequence(xt)t∈N
such thatA(xt+1,xt)≤ 0 instead ofxt+1 = argmin{A(x, xt), x∈X }.
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3.3. Generalized linear regression with concave link function and Hinde
Demétrio models

Let’s assume the link functiong is concave with values inR. Then its reciprocalh = g−1 is

a convex function and this yields that the functionsβ 7→ [h(txβ )]p−1

p−1 andβ 7→ − ln(h(txβ )) are

convex functions on the parameters domainRk.

Lemma 6. Let (α j) j=1:k be a vector inRk with positive entries such that
k

∑
j=1

α j = 1 and

β̂ =
(
β̂ j
)

j=1:k ∈ Rk. Then,

[h(txβ )]p−1

p−1
=

1
p−1

[
h

{
k

∑
j=1

α j
x j

α j

(
β j − β̂ j

)
+ txβ̂

}]p−1

≤
k

∑
j=1

α j

p−1

[
h

{
x j

α j

(
β j − β̂ j

)
+ txβ̂

}]p−1

,

− ln(h(txβ )) =− ln

[
h

{
k

∑
j=1

α j
x j

α j

(
β j − β̂ j

)
+ txβ̂

}]

≤−
k

∑
j=1

α j ln

[
h

{
x j

α j

(
β j − β̂ j

)
+ txβ̂

}]
.

By invoking the concavity of the functionv 7→ v2−p

2−p , the forthcoming lemma is straight-
forward.

Lemma 7.

Qp
(
β ,φ | {(yi ,xi) i = 1 : n})≤Qp

(
β̂ ,φ | {(yi ,xi) i = 1 : n}

)
+

n

∑
i=1

Ap,i
(
β , β̂

)
,

where

Ap,i
(
β , β̂

)
= −yi

φ

k

∑
j=1

αi j ln

[
h

{
xi j

αi j

(
β j − β̂ j

)
+ txi β̂

}]
+

yi

φ
ln
(

m
(
xi , β̂

))
+

yiφ
−p

1+φ1−p
[
m
(
xi , β̂

)]1−p

[
k

∑
j=1

αi j

p−1

[
h

{
xi j

α j

(
β j − β̂ j

)
+ txi β̂

}]p−1
]

− yiφ
−p

1+φ1−p
[
m
(
xi , β̂

)]1−p

[
m
(
xi , β̂

)]1−p

p−1

+φ
1−p[m(xi , β̂

)]1−p
k

∑
j=1

xi j
(
β j − β̂ j

)
.
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Proposition 8. Ap
(
β , β̂

)
=

n

∑
i=1

Ap,i
(
β , β̂

)
is an auxiliary function for the minimization of

Qp(β ,φ).

One can notice that the parametersβ j , j = 1 : k, are separated in the functionAp. This
makes the minimization ofAp with respect toβ easy to carry out, without matrix inversion.
What comes before suggests that the regression parametersβ ∈ Rk andφ > 0 could be com-
puted by running the following algorithm:

Algorithm 2. Algorithm for generalized linear regression parameters estimation in case of
Hinde-Demétrio models.

Repeat until convergence within a numerical tolerance:

1. Hold φ fixed.

Repeat until convergence within a numerical tolerance:

Solve
∂Ap
∂β j

(
β , β̂

)
= 0, j = 1 : k.

End(Repeat)

2. Solve the moment equation
n

∑
i=1

(
yih(txi β̂ )

)2

h
(

txi β̂
)
+φ1−p

[
h
(

txi β̂
)]p = degree of freedom with respect

to φ

End(Repeat)

3.3.1. Solving the system of equations∂Ap
∂β j

(
β , β̂

)
= 0, j = 1 : k

One can easily show that

∂Ap

∂β j

(
β , β̂

)∣∣∣
β=β̂

=− 1
φ

n

∑
i=1

yi
xi j h′

{
txi β̂

}
h
{

txi β̂
} +

n

∑
i=1

yiφ
−pxi j h′

{
txi β̂

}
h
{

txi β̂
}p−2

1+φ1−p
[
m
(
xi , β̂

)]1−p

+φ
1−p

n

∑
i=1

[
m
(
xi , β̂

)]1−p
xi j

and

∂ 2Ap

∂β 2
j

(
β , β̂

)∣∣∣
β=β̂

= − 1
φ

n

∑
i=1

yix2
i j

αi j

h′′
{

txi β̂
}

h
{

txi β̂
}[

h
{

txi β̂
}]2 +

1
φ

n

∑
i=1

yix2
i j

αi j

[
h′
{

txi β̂
}]2[

h
{

txi β̂
}]2

+
n

∑
i=1

yiφ
−px2

i j

αi j

h′′
{

txi β̂
}

h
{

txi β̂
}p−2

1+φ1−p
[
m
(
xi , β̂

)]1−p

+(p−2)
n

∑
i=1

yiφ
−px2

i j

αi j

[
h′
{

txi β̂
}]2

h
{

txi β̂
}p−3

1+φ1−p
[
m
(
xi , β̂

)]1−p .
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One can solve the equation∂Ap
∂β j

(β , β̂ ) = 0 by using the the following update rule

β̂
new
j = β̂ j +

∂Ap

∂β j
(β , β̂ )

∣∣∣
β=β̂

∂ 2Ap

∂β 2
j

(β , β̂ )
∣∣∣
β=β̂

.

3.3.2. Log-linear regression with Hinde-Demétrio models

We will focus in this section on thelog link function. Then, it comes that

∂Ap

∂β j

(
β , β̂

)∣∣∣
β=β̂

=− 1
φ

n

∑
i=1

yixi j +φ
−p

n

∑
i=1

yixi j

[
m
(
xi , β̂

)]p−1

1+φ1−p
[
m
(
xi , β̂

)]1−p

+φ
1−p

n

∑
i=1

[
mi
(
xi , β̂

)]1−p
xi j

and

∂ 2Ap

∂β 2
j

(
β , β̂

)∣∣∣
β=β̂

= (p−1)φ−p
n

∑
i=1

yix2
i j

αi j

[
m
(
xi , β̂

)]p−1

1+φ1−p
[
m
(
xi , β̂

)]1−p .

The computation of the regression parameters is achieved by means of the algorithm
below:

Algorithm 3. Algorithm for log-linear regression with Hinde-Demétrio models

Repeat until convergence within a numerical tolerance:

1. Hold φ fixed.

Repeat until convergence within a numerical tolerance:

β̂
new
j = β̂ j +

− 1
φ

n

∑
i=1

yixi j +φ−p
n

∑
i=1

yixi j

[
m
(

xi ,β̂
)]p−1

1+φ1−p
[
m
(

xi ,β̂
)]1−p

(p−1)φ−p
n

∑
i=1

yix2
i j

αi j

[
m
(

xi ,β̂
)]p−1

1+φ1−p
[
m
(

xi ,β̂
)]1−p

End(Repeat)

2. Solve the moment equation
n

∑
i=1

(
yi−exp

(
txi β̂

))2

exp
(

txi β̂
)
+φ1−p

[
exp
(

txi β̂
)]p = degree of freedom with re-

spect toφ .

End(Repeat)
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§4. Concluding remarks

The use of surrogate objective functions for the optimization of loss functions is gaining in-
terest in computational statistics, extending the EM algorithms that are very popular for miss-
ing data problems. This paper aims to emphasis this trend by proposing some computation
schemes in the framework of the regression analysis of count data that can help to avoid bur-
den of computation in the regression parameters estimation. This preliminary work should
be completed by the study of the rates of convergence of the algorithms and the statistical
performances of the parameters estimation.
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