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A SIMPLIFIED MODEL FOR THE AEROELASTIC
DESIGN OF QUASI-AXISYMMETRICAL BODIES

Philippe Destuynder and Francoise Santi

Abstract. An axisymmetrical body embedded in an incompressible flow is considered in
this paper. But the movement of the body can be non-axisymmetrical and therefore the
flow perturbation is no more axisymmetrical. Using a perturbation method we construct
an aeroelastic model which enables one to detect instabilities.
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§1. Introduction

An axisymmetrical airship set in an air flow, is considered in this paper. The reference con-
figuration with respect to the wind direction is compatible with this property. It is assumed
that the movements of the structure can be considered as a slight perturbation of the axisym-
metrical configuration. Then using domain perturbation tools, we construct an asymptotic
expansion of the solution to the unsymmetrical model using Fourier decomposition for the
first order corrector terms. Therefore, the three dimensional model can be evaluated from a
series of axisymmetrical models. Numerical results are also given in order to investigate the
aeroelastic stability of the system. The first case that we consider in this paper, corresponds to
the rigid eigenmodes of the structure. In fact, two of them are meaningful: the galloping and
the pitching movements. The second case is more complicated and is obtained when flexible
eigenmodes of the structure are taken into account. In the latter case, a progressive Euler-
Lagrange formulation is suggested in order to give a consistent formulation of the coupling
conditions between the structure and the fluid.

In each case, we develop a method which enables one to perform a stability analysis of the
coupled system (the structure is represented by a finite number of eigen-modes), and the fluid
which is modeled using an incompressible but viscous, flow model.

§2. Galloping and pitching movements

Let us first define few notations which will be used in the following. The three dimensional
open set on which the aerodynamical model is set is denot€2{( @) It corresponds to an
axisymmetrical configuration of the airship with respect to the flow direction. The boundary
betweenQ(0) and the structure is denoted B¢0). The remaining part of this boundary is
split into two parts: one denoted Iby is defined by

Fo={xeR3 ea).v(x) <0}, (1)
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wherev(x) is the unit outwards normal to the boundary®f0) atx ande(a) is the wind
direction. Let us prescribe the Dirichlet boundary conditiori grioy

u=Uea)U>0o0nTp and u=0 on S0)which is the structure (2)
The velocity fieldu and the pressure fielolare solution of

(u,p) €V x LZ(Q(O)) s.t.:

YWevV, / 0 +u®Du} V—pdiv(v)+2uy(u) : y(v) =0, 3)
vge L3(Q / qdiv(u
The following notations have been usedi§ the viscosity of the aip the mass density):
1
u=ue, [u®dul; = Z Uedklj, [Y(W)]ij = 5 (dj + dy), 4
k=13
V ={v=vae, vie H}(Q(0));vi=00n MoUS(0)}. (5)

The existence and unigueness of a solution to (3) are not proved. The only results known are
for the two dimensional case [7]. Concerning the solution method, the mixed finite elements
are very reliable [5]. This is the method used in this paper. But the model that we consider
is three dimensional. Whee(«) is parallel to the main axis of the ellipsoid, the solution

is also axisymmetrical. One can use a cylindro-polar system of coordifrafex), for the
Navier-Stokes model (figure 1). The velocity fields expressed in the badie, €3, e) by

When the flow is axisymmetrical all the derivatives with respeqt e zero and one has
ug = 0. In this case the solution is denotad, p°) and is solution of the following system:

W € Vo, p/ —v+[ %% 0u%.v
_ 0 4 0y - iy
Lo P M2 [ vy =0,©)
Vg e L2(0(0)), —/(o)qdiv(uo) =0,

with the boundary conditions:
u® =Ue, on y(0), andu® =0 on s(0). 7)
The following notations have been used (figure 1):
Q(0) ={(r, B,x)|(r,x) € ®(0), B € [0,2x[}, To = ¥ x [0,27[, S(0) = S(0) x [0, 27]

and
Vo = {v = (r,\) € [H(@(0))]?, v=0 onypUs(0)}. ®)
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Figure 1: The geometry of the airship

Let us come back to the general case in which the pitching anggenot zero. Nevertheless
e(a) is assumed to be close &. In fact the only non axisymmetrical condition is the
Dirichlet condition satisfied by the velocity on the boundBgy Let us set

{ e(a) = coq o )&+ sin(a) sin(B)er +sin(a) cog B )eg, ©)

u=u+u®, p=p’+p”
Let us now formulate the linearized model with respeciido(u®, p%) is the solution of
which. Using a Fourier decomposition with respect to the afiglene observes that only the

harmonic 1 is different from zero. Hence, using a complex representation for sake of brevity,
one obtains

(u% p%) = (ut,p') = ;(Ufler + Ut + Ut prhe’, (10)

where(ul, pt) € V x L2(Q(0)) is solution of an axisymmetrical model (hence 2D!) excepted
concerning the boundary condition:

1
wev, p/ g.v+[u°®Dul+u1®Du°].v
Q(0) It
- [ optdvwsan [ yu)ivv=0 @)
Q(0) Q()

Vg € L2(Q(0)), _/Q<0> qdiv(ul) = 0.

Furthermore these boundary conditions satisfied’ogn Iy are

ut = U sin(a)[sin(B)e + cogB)eg). (12)
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Let us point out that the component (see figurezdeﬁ is not zero along the axis of symmetry,

but one hagu®,e,) = 0. In order to ensure thatu) € L(w(0)) itis necessary that +iug =

0 on this axis corresponding to= 0. The solution to the previous system is proportional to
sin(a). It can be solved with a two dimensional problem but with a coupling withlt is
worth to recall the explicit expression of the strain tensor expressed in the(basis ex).

Let us seu = urer +Uges + Ux&. Then,

. 17d(ru) | dugy  duy
dviw) = 7[5+ 55 ] e
o g I 9
or or or ﬁ(')
Qu= | 19% U W 19U 1oUc| o= [ 19
rag r r radp radp radp
o g I 9
oX oX oX ox
aor Hen ?ﬁ‘?) (5 + 50)
=155t ) vrras alrap T ad)
1 (9LIX aUr 1 18UX &UB aUx
2 (Car +5x) é(?ﬁ*&) x

2.1. Quasi steady state

Let us consider two time scalings. The first one is connected to the frequelg@éshe
structure, and the second one to the flow veloditgnd the wave length of an eigenmode.

Let us set Lt
fr = f (13)

The steady state approximation can usually be appliéd<€ 1. Furthermore it is assumed

that the magnitude of the structural displacements is small enough. Nevertheless it is nec-
essary to take into account the changes in the flow velocity due to these movements. This
leads to the concept of the aerodynamical damping [4, 3]. Three terms are meaningful in
the dynamical contribution. One is the classical relative acceleration. The second one is the
acceleration of the frame connected to the structure, and the third one is the gyroscopic effect.

Let us introduce the relative velocityg on T g:
va=Ue(a) —Z°~RAOx. (14)

The second term is the rigid body motion of the structutBis the velocity at poinb and

R is the rotation vector. The flow model is then similar to (3), excepted the new terms due to

the acceleration and those by which become

U=va=U(coda)e+sin(a)e,) —Z2° —RAoOx. (15)
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Thus,@ +u®Ouis replaced by&%J +u®Ou+ ¥2+ 2R Au, wherey® is given by

ot 0
=2+ RA0X+RA(RAOX).

Let us consider a movement of the structure which implies a transldt@rand a rotation
oey. The boundary condition becomes

u = (Ucoga)— arsin(B))ex+ (U sin(a) + ax—d,)sin(8)e

. ) . (16)
+ (Usin(a) + ax—d;)es.
Furthermore, the acceleration of the frame is
¥ = dye,+ dy0ex + ey A OX+ (rPey A (8 A OX).
The linearisation around the axisymmetrical solution gives
out g 1,1 0 L, o 0
o Tu ®Out+u* @ Ou® + y*-+ 2ae, A U°, (17)

where the linearized acceleration is denoted/®y and is such that
Y°h = de; + diey A Ox = d[sin(B)e +cogB)eg] + d[cog B)e, —sin(B)es] Aox.  (18)

Concerning the gyroscopic term, one gets:

¥ = 2a[cosB)e —sin(B)eg] AuC. (19)

All the addditional terms (six) are confined on the first Fourier harmonic with respect to the
anglef. The solution method requires to solve seven independent likerddiels:

e The first one corresponds to the axisymmetrical flow with a flow velocity at the infinity
equal toU cog a)ex ~ Ue. The solution is denote@i®, p°).

e The six following ones corresponds to the first Fourier harmonf.in

i) One is dependent om and the solution is proportional tdsin(a) ~ U c.
ii) Another one is proportional te.
iii) In a similar way there is one proportional th.
iv) Then, one contribution is proportional tb,
v) and a similar one is proportional to.
vi) Finally the gyroscopic term is proportional ta

Finally, let us set, using a complex representation for sake of brevity,

u=ul+ g e"PIUau™ + autt + dut9 + dutm 4 gutiE 4 qut.  (20)
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§83. Computation of the aerodynamical forces

3.1. Slow movements

Let us consider the simpliest case where the structure is stationary versus the flow direction.
The unit normal td5(0) is denoted byN and its projection onto the plarier,e) is v. The
mechanical stress is

T=pN—2uy(u)N=T+T!

with
TO = p°N—2uy(u®).N, andT* = p'N — 2uy(ul).N.

Becausd ! is proportional to sifr) and thus tax after linearisation, one obtains a linear ex-
pression with respect i@. Let us now consider a movement of the rigid structure represented

by . . .
8Z(x) = 8Z(0) 4+ SR A OX.

The virtual work of the aerodynamical forces is
P(52) = / T0.3'z°+/ (TL, 6R, 0x).
J8(0) S(0)

But T! is proportional to sifr), anda is constant along the structure, therefore

P(82) =P°(82) +sin(a)PY(82).
This enables one to formulate a stability model for the coupled system as follows:

Joa = Esin(a) ~ Ea, for smalle, (21)
therefore the stability depends on the sigrtofin fact the question is to set the center of

rotation denoted by, with respect to the aerodynamical centre.

3.2. Steady aeroelasticity

From Section 2, one can write the forces applied to the structure as follows:
T =Ucoga)T2+Usin(a)T +aTt +d, T+ aT? 4 d, T™+ & TC, (22)

whereT? is the stress vector due to the axisymmetrical floog ) ~ 1), T' is the stress
vector due to the pitching angte~ sin(«), T! is the stress vector due to the pitching velocity,
TY is the stress vector due to the gallopii¢f! is the added inertia for the pitching™2 is
the added mass due to the galloping, aiids the stress vector due to the gyroscopic effect.

After a linearization of the full system with respect to the pitching anglgdnd the
galloping @,), one obtains

M2 <g‘z> +c2 (3‘) +Ka <g‘z> ) (23)

where:
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o M2is the full mass matrix,

e C?is the damping (symmetrical part) and the gyroscopic (skew part) matrix,
o K&= (kk‘; 8) is the aerodynamical stiffness matrix.

BecauseK? not symmetrical, one can observe (at a critical velocity of the steady flow), a
flutter instability (mode crossing). If the damping becomes negative, one says that there is
a wake-flutter instability. Hence the stability analysis consists in studying the real part of
solution to

det —A2M3 +iAC? +K?) = 0. (24)

84. Progressive Euler-Lagrange formulation for a flexible structure

The coupling equation between the fluid and the structure should be written in the deformed
configuration. Because the steady state is not neglectible, additional terms due to the rotation
of the normal appear in the model. The best way to write correctly this compatibility condi-
tion in our opinion, is to use a progressive Euler-Lagrange frame. First of all let us recall the
formulation of the shell model for the structure.

4.1. The shell model

The classical Koiter model has been used in order to compute the eigenmpdeBhe
corresponding frequencies are denotedby

Let us define by the displacement field of the structure. nif.,.) is the inertia bilin-
ear form,a(.,.) the stiffness one an@" the admissible displacement space, the eigenvalue
problem consists in finding, = (27 f,)2, wy) such that

(25)

Wn € #, 2n € RT, such that:
We W, Aam(Wn,V) =a(Wn,V).

Let us assume that the structural movement is well represented by a spaeigeinmodes
denoted by#\:

z= HZN Kn(t)wWh. (26)

Let us denote by the unit normal to the shell oriented towards the inside of the fluid. From
shell theory the deformed normal becomes

N'=N+{(t), (27)
where{ (1) is the inplane rotation which depends oriet us extend inside the fluid by:

) 6=(6),i=12 6 cW-=(Q(0)),
ii) the support ofd being included in a neighbourhood of the st&D), (28)
i) 8 =z0ong0).
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Let us now define the mappirfef from Q(0) ontoQ(z) (deformed configuration):

x€ Q(0) —x? =x+6(x) € Q(2). (29)

e Change of functions Let ¢ be a function defined 0f(z). We setp® (x) = poF?(x).
. Changesintheintegrals/( )(pz/( )(p" detl +D0), whereD# is the Jacobian matrix
Q(z Q(0

associated t@. Its transpose in the polar coordinate systemes, &) is 0.

0
e Changesin the denvatwes(gq;) = 3;’: o(l +Do)" 1

e Divergence for a vector p

(div(p))? = W—lwe) div((I + D) 1p® det(l + D#)).

e Change in the convection term (u® Ou)® = u® ® (I +'D)~10u.
e Changes in the strain rates
1
(y(u)? =y (u®) = 5(“ +'Do)*0ul +'0u’(1 + DO Y)).

These formulae enables one to formulate an equivalent flow problem but €£0pn

4.2. Progressive Euler-Lagrange formulation

Using the mapping ® and settingu®, p?) = (u, p)oF?, we derive the following model:
Find (u?, p?) e V x L3(Q(0)) such that:

9
Wev, p/ S v+u® o (1+D0)10u’ v] detl + Do)

—/ o d|v(( +D6) u? det(l + D6))
(30)
+u/ (1+'D6) *0u® +'0u’(1 + DO ™))
: (1+'D6)10Ovdetl +D6) =0,
v € L2(Q(0)), —/Q(o) q div((1 +D8)~'u® detl + D)) =O.

If & =0, the obtained model is exactly the axisymmetrical one. Let us introduce a lineariza-
tion with respect t@, which is a linear function of. Let us set

(u?,p?) = (%, p% + (ut, ph) +
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and by introducing this approximation into (30) one obtains tbtp!) is solution of
find (ul, p!) € V x L2(Q(0)) such that:

1
Vvev,p/ ai.v+[u°®l]ul+ul®|]u°] / p* div(ul)
Ja(o) It Q(0)

uf

= —p/ —+u ® Ou )div(e)—uo.tDG.Duo} v

(31)
+/ e div(u®) div(6) — p°div(DO.v)
Q(0)

—u /'( )Zy(uo) :y(v)div(0) — ('D6.0uC +'0u®.D6).0v
JQ(O

4.3. Fourier decomposition

In order to simplify the three dimensional flow model we make use of a Fourier decomposi-
tion in 8. The only harmonics which are different from zero are those which are contained in
the structural displacement

4.4. Kinematical continuity between the fluid and the structure

In the deformed configuration one has

u(Fo(x,t),t) = vx € §(0), (32)

dz
—(X,t
at ( ) )3
which is equivalent irQ(0) to the following relation:

d

u(x,t) = 22 (x.t). (33)

at

Let us consider for instance the normal component to the shell. The unit normal to the surface

S(z) is denoted byN’ and we already point out thad’ = N + {(z), where{ is the inplane
rotation. Let us sett = u® 4+ ut, and thus we derive the kinematical continuity condition:

W N+ (@0 = (Z.N). (34
Let us point out that the time derivative af appears in the model, and this implies the
second order time derivative afwhich acts an an added mass term.

The Fourier decomposition df(z) only implies the harmonics containedZn The unit
normalN can be written as followsN = cog k)€ + sin(k)ey, wherex is the angle between
N ande . Hence, all the harmonics jh are decoupled.
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85. Forces due to fluid and applied to the structure

5.1. Forces due to the eigenmodes

On the surfac&(z) the stress vector i§ = —pN’ + 2uy(u).N’. Using the mapping 9, this
quantity becomes at order one §{0):

TO = —p"N+2uy(u®) — p*N - p°¢(2) + 2uy(ut) — u('DO.OUWC + OUC.DO).  (35)

The two first terms correspond to the axisymmetrical flow. The four next ones are due to the
dynamical behaviour. Let us assume that the reduced frequency is small enough in order to
justify the use of the steady flow. In fact they are proportiona, ®z/Jt andd?z/dt?. Let

us set here again
n=1N

This enables one to write at order one:

%le'f‘ aan

o 2 T%|. (36)

=T 3 k(O T+
n=1N

Hence, in order to compute the previous term, one has to sdlve Baxisymmetrical and
independent problems. For instance concerning the harmanie has the following expres-
sion to compute:

22K,
ot2

aK
_ 0 0z n 1z
yﬂ - /S(O) |:(T 7Wn) + Kn(t)(T 7Wn) + (9t (T 7Wn) +

(TZwy)|. @7

Let us denote by the vector inRN the component of which at&,. Then,

Fn=F+ kn(t)FY + kn(t)FR2 + Kn (1) F2Z. (38)

5.2. The aeroelastic model

Let us denote by the vector inRN the component of which bein§, and which are the
coefficients of the eigenvectorg,. Then,

%7 0Z 9%Z
M—+KZ:L@(Z,W,W) (39)

ot?

One should add initial conditions. Furthermore, the right hand gidgepends oiZ and its
time derivatives. The matricéd andK are diagonal in the eigenvector basis. Let us set

0z 9°Z
_ O“O_ az _ca”’—™ az ~—
F=F"-K%Z Cat MatZ' (40)
The coupled system becomes, with already mentioned notations:
2
(M+Ma)a—z +Caa—z+(K+Ka)Z = 7°, (41)

ot? ot
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Figure 2: Drag coefficient with respect to the velocity

The aeroelastic study consists in computing the eigenvalweish respect tdJ:
det(—A2(M 4+ M?) +iAC? + (K +K?)) =0. (42)

An instability can occur if the imaginary part &fis negative.

5.3. Discussion about the influence of the various terms appearing in the
aeroelastic model and example

The effect of the added mass matrix is to reduce the eigenfrequencies. The even part of the
matrix C is an aerodynamical damping. It can contribute to a so-called wake flutter. The odd
part ofC is the Corriolis effect and in most cases, stabilizes the system. The rKatrix?

is the augmented stiffness and is no more symmetrical because of the aerodynamical forces.
A classical flutter instability can appear if two eigevalues are crossing each other. Let us give
a simple example. It corresponds to a pitching or a galloping movement of the airship. The
eigenvalues have been computed for several values of the angle of attauk taking into
account the aerodynamical forces duedtcand &. Furthermore, the lift and the pitching
moment coefficients have been computed (see figure 3). One can see on figure 3 left, that the
airship is stable —from the static point of view— versus a pitching movensgrt 0). The
aerodynamical centre is located in the front part of the airship. The drag coefficient has been
plotted on figure 2. Even if it decrease, it is not meaning full beacause of the scale used. But
concerning the aerodynamical damping it is quite zero for very small angle of attack. Then it
is slightly negative forx ~ 4. But it becomes positive for larger value @f(see on the right

figure 3).
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Figure 3: Left: lift and pitching moment at the center versusRight: imaginary part ol
for a pitching movement (green) and a galloping (blue)

86. Conclusion

A simplified method for studying the aeroelasic stability of an axisymmetrical body is sug-
gested. The method enables to take account the small perturbation with respect to the axis of
symmetry in an aeroelastic analysis.

References
[1] AMARA, S.Etude des vibrations propres d'un ellipsoide plongé dans un écoulement
Mémoire d’ingénieur CNAM, Paris, 2006.
[2] DESTUYNDER PH. Modélisation des Coques Minces Elastigudsasson, Paris, 1990.

[3] DOWELL, H., CURTISS, C. R., SCANLAN, R. H.,AND SISTO, F. A Modern Course
in Aeroelasticity Kluwer Academic Publishers, 1989.

[4] FUNG, Y. C. Aroelasticity Prentice Hall, New-York, 1968.

[5] GIRAULT, V., AND RAVIART, P. A. Finite element Methods for Navier-Stokes Equa-
tions Springer-Verlag, New York, 1986.

[6] KHOURY, G. A. Airship TechnologyCambridge University Press, 1999.

[7] LioNs, J. L. Quelques Méthodes de Résolution des Problémes non Linéairesd,
Paris, 1969.

[8] Suzuki, K., KikucHI, N., AND KOSAWADA, T. Axisymmetric vibrations of thin
shells of revolutionBulletin of J.S.M.E. 270 , May 1984.

Philippe Destuynder and Frangoise Santi
Conservatoire National des Arts et Métiers
292, rue saint Martin Paris 75141
destuynd@cnam.fr andsanti@cnam.fr



