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A SIMPLIFIED MODEL FOR THE AEROELASTIC

DESIGN OF QUASI-AXISYMMETRICAL BODIES

Philippe Destuynder and Françoise Santi

Abstract. An axisymmetrical body embedded in an incompressible flow is considered in
this paper. But the movement of the body can be non-axisymmetrical and therefore the
flow perturbation is no more axisymmetrical. Using a perturbation method we construct
an aeroelastic model which enables one to detect instabilities.
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§1. Introduction

An axisymmetrical airship set in an air flow, is considered in this paper. The reference con-
figuration with respect to the wind direction is compatible with this property. It is assumed
that the movements of the structure can be considered as a slight perturbation of the axisym-
metrical configuration. Then using domain perturbation tools, we construct an asymptotic
expansion of the solution to the unsymmetrical model using Fourier decomposition for the
first order corrector terms. Therefore, the three dimensional model can be evaluated from a
series of axisymmetrical models. Numerical results are also given in order to investigate the
aeroelastic stability of the system. The first case that we consider in this paper, corresponds to
the rigid eigenmodes of the structure. In fact, two of them are meaningful: the galloping and
the pitching movements. The second case is more complicated and is obtained when flexible
eigenmodes of the structure are taken into account. In the latter case, a progressive Euler-
Lagrange formulation is suggested in order to give a consistent formulation of the coupling
conditions between the structure and the fluid.
In each case, we develop a method which enables one to perform a stability analysis of the
coupled system (the structure is represented by a finite number of eigen-modes), and the fluid
which is modeled using an incompressible but viscous, flow model.

§2. Galloping and pitching movements

Let us first define few notations which will be used in the following. The three dimensional
open set on which the aerodynamical model is set is denoted byΩ(0). It corresponds to an
axisymmetrical configuration of the airship with respect to the flow direction. The boundary
betweenΩ(0) and the structure is denoted byS(0). The remaining part of this boundary is
split into two parts: one denoted byΓ0 is defined by

Γ0 = {x∈ R3, e(α).ννν(x)≤ 0}, (1)
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whereννν(x) is the unit outwards normal to the boundary ofΩ(0) at x ande(α) is the wind
direction. Let us prescribe the Dirichlet boundary condition onΓ0 by

u = Ue(α) U > 0 on Γ0 and u = 0 on S(0) which is the structure. (2)

The velocity fieldu and the pressure fieldp are solution of

(u, p) ∈V×L2(Ω(0)) s.t. :

∀v ∈V,
∫

Ω(0)
ρ

[
∂u
∂ t

+u⊗∇u
]
.v− p div(v)+2µγ(u) : γ(v) = 0,

∀q∈ L2(Ω(0)), −
∫

Ω(0)
qdiv(u) = 0.

(3)

The following notations have been used (µ is the viscosity of the air,ρ the mass density):

u = uiei , [u⊗∇u] j = ∑
k=1,3

uk∂ku j , [γ(u)]i j =
1
2
(∂ jui +∂iu j), (4)

V = {v = viei , vi ∈ H1(Ω(0)); vi = 0 on Γ0∪S(0)}. (5)

The existence and uniqueness of a solution to (3) are not proved. The only results known are
for the two dimensional case [7]. Concerning the solution method, the mixed finite elements
are very reliable [5]. This is the method used in this paper. But the model that we consider
is three dimensional. Whene(α) is parallel to the main axis of the ellipsoid, the solution
is also axisymmetrical. One can use a cylindro-polar system of coordinates(r,β ,x), for the
Navier-Stokes model (figure 1). The velocity fieldu is expressed in the basis(er ,eβ ,ex) by

u = urer +uβ eβ +uxex.

When the flow is axisymmetrical all the derivatives with respect toβ are zero and one has
uβ = 0. In this case the solution is denoted(u0, p0) and is solution of the following system:

∀v ∈V0, ρ

∫
ω(0)

∂u0

∂ t
.v+[u0⊗∇u0].v

−
∫

ω(0)
p0 div(v)+2µ

∫
ω(0)

γ(u0) : γ(v) = 0,

∀q∈ L2(ω(0)), −
∫

ω(0)
qdiv(u0) = 0,

(6)

with the boundary conditions:

u0 = Uex on γ(0), andu0 = 0 on s(0). (7)

The following notations have been used (figure 1):

Ω(0) = {(r,β ,x)|(r,x) ∈ ω(0), β ∈ [0,2π[}, Γ0 = γ0× [0,2π[, S(0) = s(0)× [0,2π[

and
V0 = {v = (vr ,vx) ∈ [H1(ω(0))]2, v = 0 onγ0∪s(0)}. (8)
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Figure 1: The geometry of the airship

Let us come back to the general case in which the pitching angleα is not zero. Nevertheless
e(α) is assumed to be close toex. In fact the only non axisymmetrical condition is the
Dirichlet condition satisfied by the velocity on the boundaryΓ0. Let us set{

e(α) = cos(α)ex +sin(α)sin(β )er +sin(α)cos(β )eβ ,

u = u0 +uα , p = p0 + pα .
(9)

Let us now formulate the linearized model with respect toα, (uα , pα) is the solution of
which. Using a Fourier decomposition with respect to the angleβ , one observes that only the
harmonic 1 is different from zero. Hence, using a complex representation for sake of brevity,
one obtains

(uα , pα)' (u1, p1) = ∑
±

(u±1
r er +u±1

β
eβ +u±1

x ex, p±1)e±iβ , (10)

where(u1, p1) ∈V×L2(Ω(0)) is solution of an axisymmetrical model (hence 2D!) excepted
concerning the boundary condition:

∀v ∈V, ρ

∫
Ω(0)

∂u1

∂ t
.v+[u0⊗∇u1 +u1⊗∇u0].v

−
∫

Ω(0)
p1 div(v)+2µ

∫
Ω(0)

γ(u1) : γ(v) = 0,

∀q∈ L2(Ω(0)), −
∫

Ω(0)
qdiv(u1) = 0.

(11)

Furthermore these boundary conditions satisfied byu1 on Γ0 are

u1 = U sin(α)[sin(β )er +cos(β )eβ ]. (12)
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Let us point out that the component (see figure 1)u1
β
eβ is not zero along the axis of symmetry,

but one has(uθ ,ex) = 0. In order to ensure thatγ(u)∈ L2(ω(0)) it is necessary thatur + iuβ =
0 on this axis corresponding tor = 0. The solution to the previous system is proportional to
sin(α). It can be solved with a two dimensional problem but with a coupling withuβ . It is
worth to recall the explicit expression of the strain tensor expressed in the basis(er ,eβ ,ex).
Let us setu = urer +uβ eβ +uxex. Then,

div(u) =
1
r

[
∂ (rur)

∂ r
+

∂uβ

∂β

]
+

∂ux

∂x
,

∇u =



∂ur

∂ r

∂uβ

∂ r
∂ux

∂ r

1
r

∂ur

∂β
−

uβ

r
ur

r
+

1
r

∂uβ

∂β

1
r

∂ux

∂β

∂ur

∂x

∂uβ

∂x
∂ux

∂x


, with ∇(.) =



∂

∂ r
(.)

1
r

∂

∂β
(.)

∂

∂x

 ,

γ(u) =



∂ur

∂ r
1
2

(∂uβ

∂ r
+

1
r

∂ur

∂β
−

uβ

r

) 1
2

(
∂ux

∂ r
+

∂ur

∂x

)
1
2

(∂uβ

∂ r
+

1
r

∂ur

∂β
−

uβ

r

) ur

r
+

1
r

∂uβ

∂β

1
2

(1
r

∂ux

∂β
+

∂uβ

∂x

)
1
2

(
∂ux

∂ r
+

∂ur

∂x

) 1
2

(1
r

∂ux

∂β
+

∂uβ

∂x

)
∂ux

∂x


.

2.1. Quasi steady state

Let us consider two time scalings. The first one is connected to the frequenciesfs of the
structure, and the second one to the flow velocityU and the wave lengthL of an eigenmode.
Let us set

fr =
L fs
U

. (13)

The steady state approximation can usually be applied iffr � 1. Furthermore it is assumed
that the magnitude of the structural displacements is small enough. Nevertheless it is nec-
essary to take into account the changes in the flow velocity due to these movements. This
leads to the concept of the aerodynamical damping [4, 3]. Three terms are meaningful in
the dynamical contribution. One is the classical relative acceleration. The second one is the
acceleration of the frame connected to the structure, and the third one is the gyroscopic effect.
Let us introduce the relative velocityva on Γ0:

va = Ue(α)− Ż0− Ṙ∧ox. (14)

The second term is the rigid body motion of the structure:Ż0 is the velocity at pointo and
Ṙ is the rotation vector. The flow model is then similar to (3), excepted the new terms due to
the acceleration and those onΓ0 which become

u = va = U(cos(α)ex +sin(α)ez)− Ż0− Ṙ∧ox. (15)
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Thus,
∂u
∂ t

+u⊗∇u is replaced by
∂u
∂ t

+u⊗∇u+ γe+2Ṙ∧u, whereγe is given by

γ
e = Z̈0 + R̈∧ox+ Ṙ∧ (Ṙ∧ox).

Let us consider a movement of the structure which implies a translationdzez and a rotation
αey. The boundary condition becomes

u = (U cos(α)− α̇r sin(β ))ex +(U sin(α)+ α̇x− ḋz)sin(β )er

+(U sin(α)+ α̇x− ḋz)eβ .
(16)

Furthermore, the acceleration of the frame is

γ
e = d̈zez+ ḋzα̇ex + α̈ey∧ox+ α̇

2ey∧ (ey∧ox).

The linearisation around the axisymmetrical solution gives

∂u1

∂ t
+u0⊗∇u1 +u1⊗∇u0 + γ

eL+2α̇ey∧u0, (17)

where the linearized acceleration is denoted byγeL, and is such that

γ
eL = d̈zez+ α̈ey∧ox = d̈z[sin(β )er +cos(β )eβ ]+ α̈[cos(β )er −sin(β )eβ ]∧ox. (18)

Concerning the gyroscopic term, one gets:

γ
c = 2α̇[cos(β )er −sin(β )eβ ]∧u0. (19)

All the addditional terms (six) are confined on the first Fourier harmonic with respect to the
angleβ . The solution method requires to solve seven independent linear 2D models:

• The first one corresponds to the axisymmetrical flow with a flow velocity at the infinity
equal toU cos(α)ex'Ue. The solution is denoted(u0, p0).

• The six following ones corresponds to the first Fourier harmonic inβ .

i) One is dependent onα and the solution is proportional toU sin(α)'Uα.

ii) Another one is proportional tȯα.

iii) In a similar way there is one proportional tȯdz.

iv) Then, one contribution is proportional tödz,

v) and a similar one is proportional töα.

vi) Finally the gyroscopic term is proportional tȯα.

Finally, let us set, using a complex representation for sake of brevity,

u = u0 +∑
±

e±iβ [Uαu±i + α̇u±t + ḋzu±g + d̈zu
±ma+ α̈u±ia + α̇u±c]. (20)
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§3. Computation of the aerodynamical forces

3.1. Slow movements

Let us consider the simpliest case where the structure is stationary versus the flow direction.
The unit normal toS(0) is denoted byN and its projection onto the plane(er ,ex) is ν . The
mechanical stress is

T = pN−2µγ(u).N = T0 +T1,

with
T0 = p0N−2µγ(u0).N, andT1 = p1N−2µγ(u1).N.

BecauseT1 is proportional to sin(α) and thus toα after linearisation, one obtains a linear ex-
pression with respect toα. Let us now consider a movement of the rigid structure represented
by

δ Ż(x) = δ Ż(0)+δ Ṙ∧ox.

The virtual work of the aerodynamical forces is

P(δ Ż) =
∫

S(0)
T0.δ Ż0 +

∫
S(0)

(T1,δ Ṙ,ox).

But T1 is proportional to sin(α), andα is constant along the structure, therefore

P(δ Ż) = P0(δ Ż)+sin(α)P1(δ Ż).

This enables one to formulate a stability model for the coupled system as follows:

J0α̈ = ξ sin(α)' ξ α, for smallα, (21)

therefore the stability depends on the sign ofξ . In fact the question is to set the center of
rotation denoted byo, with respect to the aerodynamical centre.

3.2. Steady aeroelasticity

From Section 2, one can write the forces applied to the structure as follows:

T = U cos(α)Ta +U sin(α)T i + α̇Tt + ḋzTg + α̈T ia + d̈zTma+ α̇Tc, (22)

whereTa is the stress vector due to the axisymmetrical flow(cos(α) ' 1), T i is the stress
vector due to the pitching angleα ' sin(α), Tt is the stress vector due to the pitching velocity,
Tg is the stress vector due to the galloping,T ia is the added inertia for the pitching,Tma is
the added mass due to the galloping, andTc is the stress vector due to the gyroscopic effect.

After a linearization of the full system with respect to the pitching angle (α) and the
galloping (dz), one obtains

Ma
(

α̈

d̈z

)
+Ca

(
α̇

ḋz

)
+Ka

(
α

dz

)
= 0, (23)

where:
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• Ma is the full mass matrix,

• Ca is the damping (symmetrical part) and the gyroscopic (skew part) matrix,

• Ka =
(

kt 0
kg 0

)
is the aerodynamical stiffness matrix.

BecauseKa not symmetrical, one can observe (at a critical velocity of the steady flow), a
flutter instability (mode crossing). If the damping becomes negative, one says that there is
a wake-flutter instability. Hence the stability analysis consists in studying the real part ofλ

solution to
det(−λ

2Ma + iλCa +Ka) = 0. (24)

§4. Progressive Euler-Lagrange formulation for a flexible structure

The coupling equation between the fluid and the structure should be written in the deformed
configuration. Because the steady state is not neglectible, additional terms due to the rotation
of the normal appear in the model. The best way to write correctly this compatibility condi-
tion in our opinion, is to use a progressive Euler-Lagrange frame. First of all let us recall the
formulation of the shell model for the structure.

4.1. The shell model

The classical Koiter model has been used in order to compute the eigenmodeswn. The
corresponding frequencies are denoted byfn.

Let us define byz the displacement field of the structure. Ifm(., .) is the inertia bilin-
ear form,a(., .) the stiffness one andW the admissible displacement space, the eigenvalue
problem consists in finding(λn = (2π fn)2,wn) such that{

wn ∈W , λn ∈ R+, such that:

∀v∈W , λnm(wn,v) = a(wn,v).
(25)

Let us assume that the structural movement is well represented by a space ofN eigenmodes
denoted byWN:

z = ∑
n=1,N

κn(t)wn. (26)

Let us denote byN the unit normal to the shell oriented towards the inside of the fluid. From
shell theory the deformed normal becomes

N′ = N+ζ (t), (27)

whereζ (t) is the inplane rotation which depends onz. Let us extendz inside the fluid by:∣∣∣∣∣∣∣
i) θ = (θi), i = 1,2, θi ∈W1,∞(Ω(0)),

ii) the support ofθ being included in a neighbourhood of the shellS(0),
iii) θ = z onS(0).

(28)
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Let us now define the mappingFθ from Ω(0) ontoΩ(z) (deformed configuration):

x∈Ω(0) 7→ xθ = x+θ(x) ∈Ω(z). (29)

• Change of functions: Let ϕ be a function defined onΩ(z). We setϕθ (x) = ϕoFθ (x).

• Changes in the integrals:
∫

Ω(z)
ϕ =

∫
Ω(0)

ϕ
θ det(I +Dθ), whereDθ is the Jacobian matrix

associated toθ . Its transpose in the polar coordinate system(er ,eβ ,ex) is ∇θ .

• Changes in the derivatives:
(

∂ϕ

∂xθ

)θ

=
∂ϕ

∂x
o(I +Dθ)−1.

• Divergence for a vector p:

(div(p))θ =
1

det(I +Dθ)
div((I +Dθ)−1pθ det(I +Dθ)).

• Change in the convection term: (u⊗∇u)θ = uθ ⊗ (I + tDθ)−1∇uθ .

• Changes in the strain rates:

(γ(u))θ = γ
θ (uθ ) =

1
2

(
(I + tDθ)−1∇uθ + t∇uθ (I +Dθ

−1)
)
.

These formulae enables one to formulate an equivalent flow problem but set onΩ(0).

4.2. Progressive Euler-Lagrange formulation

Using the mappingFθ and setting(uθ , pθ ) = (u, p)oFθ , we derive the following model:

Find (uθ , pθ ) ∈V×L2(Ω(0)) such that:

∀v ∈V, ρ

∫
Ω(0)

[
∂uθ

∂ t
.v+uθ ⊗ (I +t Dθ)−1∇uθ .v

]
det(I +Dθ)

−
∫

Ω(0)
pθ div

(
(I +Dθ)−1uθ det(I +Dθ)

)
+ µ

∫
Ω(0)

(
(I +t Dθ)−1∇uθ + t∇uθ (I +Dθ

−1)
)

: (I +t Dθ)−1∇vdet(I +Dθ) = 0,

∀q∈ L2(Ω(0)), −
∫

Ω(0)
q div

(
(I +Dθ)−1uθ det(I +Dθ)

)
= 0.

(30)

If θ = 0, the obtained model is exactly the axisymmetrical one. Let us introduce a lineariza-
tion with respect toθ , which is a linear function ofz. Let us set

(uθ , pθ ) = (u0, p0)+(u1, p1)+ · · ·
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and by introducing this approximation into (30) one obtains that(u1, p1) is solution of

find (u1, p1) ∈V×L2(Ω(0)) such that:

∀v ∈V, ρ

∫
Ω(0)

∂u1

∂ t
.v+[u0⊗∇u1 +u1⊗∇u0].v−

∫
Ω(0)

p1 div(u1)

+ µ

∫
Ω(0)

γ(u1) : γ(v)

= −ρ

∫
Ω(0)

[(
∂u0

∂ t
+u0⊗∇u0

)
div(θ)−u0.tDθ .∇u0

]
.v

+
∫

Ω(0)
p0div(u0)div(θ)− p0div(Dθ .v)

−µ

∫
Ω(0)

2γ(u0) : γ(v)div(θ)− (tDθ .∇u0 + t∇u0.Dθ).∇v

+2µ

∫
Ω(0)

γ(u0) : tDθ .∇v,

∀q∈ L2(Ω(0)), −
∫

Ω(0)
q div(u1) =

∫
Ω(0)

qdiv(u0)div(θ)− p0div(Dθ .v).

(31)

4.3. Fourier decomposition

In order to simplify the three dimensional flow model we make use of a Fourier decomposi-
tion in β . The only harmonics which are different from zero are those which are contained in
the structural displacementz.

4.4. Kinematical continuity between the fluid and the structure

In the deformed configuration one has

u(Fθ (x, t), t) =
∂z
∂ t

(x, t), ∀x ∈ S(0), (32)

which is equivalent inΩ(0) to the following relation:

uθ (x, t) =
∂z
∂ t

(x, t). (33)

Let us consider for instance the normal component to the shell. The unit normal to the surface
S(z) is denoted byN′ and we already point out that:N′ = N + ζ (z), whereζ is the inplane
rotation. Let us setu = u0 +u1, and thus we derive the kinematical continuity condition:

(u1,N)+(ζ (z),u0) =
(

∂z
∂ t

,N
)
. (34)

Let us point out that the time derivative ofu1 appears in the model, and this implies the
second order time derivative ofz which acts an an added mass term.

The Fourier decomposition ofζ (z) only implies the harmonics contained inz. The unit
normalN can be written as follows:N = cos(κ)er +sin(κ)ex, whereκ is the angle between
N ander . Hence, all the harmonics inβ are decoupled.
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§5. Forces due to fluid and applied to the structure

5.1. Forces due to the eigenmodes

On the surfaceS(z) the stress vector isT =−pN′+2µγ(u).N′. Using the mappingTθ , this
quantity becomes at order one onS(0):

Tθ =−p0N+2µγ(u0)− p1N− p0
ζ (z)+2µγ(u1)−µ(tDθ .∇u0 +t ∇u0.Dθ). (35)

The two first terms correspond to the axisymmetrical flow. The four next ones are due to the
dynamical behaviour. Let us assume that the reduced frequency is small enough in order to
justify the use of the steady flow. In fact they are proportional toz, ∂z/∂ t and∂ 2z/∂ t2. Let
us set here again

z = ∑
n=1,N

κn(t)wn.

This enables one to write at order one:

Tθ = T0 + ∑
n=1,N

[
κn(t)T0z+

∂κn

∂ t
T1z+

∂ 2κn

∂ t2 T2z
]
. (36)

Hence, in order to compute the previous term, one has to solve 3N + 1 axisymmetrical and
independent problems. For instance concerning the harmonicn one has the following expres-
sion to compute:

Fn =
∫

S(0)

[
(T0,wn)+κn(t)(T0z,wn)+

∂κn

∂ t
(T1z,wn)+

∂ 2κn

∂ t2 (T2z,wn)
]
. (37)

Let us denote byF the vector inRN the component of which areFn. Then,

Fn = F0
n +κn(t)F0z

n + κ̇n(t)F1z
n + κ̈n(t)F2z

n . (38)

5.2. The aeroelastic model

Let us denote byZ the vector inRN the component of which beingζn and which are the
coefficients of the eigenvectorswn. Then,

M
∂ 2Z
∂ t2 +KZ = F

(
Z,

∂Z
∂ t

,
∂ 2Z
∂ t2

)
. (39)

One should add initial conditions. Furthermore, the right hand sideF depends onZ and its
time derivatives. The matricesM andK are diagonal in the eigenvector basis. Let us set

F = F 0−KaZ−Ca ∂Z
∂ t
−Ma ∂ 2Z

∂ t2 . (40)

The coupled system becomes, with already mentioned notations:

(M +Ma)
∂ 2Z
∂ t2 +Ca ∂Z

∂ t
+(K +Ka)Z = F 0. (41)
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Figure 2: Drag coefficient with respect to the velocity

The aeroelastic study consists in computing the eigenvaluesλ with respect toU :

det(−λ
2(M +Ma)+ iλCa +(K +Ka)) = 0. (42)

An instability can occur if the imaginary part ofλ is negative.

5.3. Discussion about the influence of the various terms appearing in the
aeroelastic model and example

The effect of the added mass matrix is to reduce the eigenfrequencies. The even part of the
matrixC is an aerodynamical damping. It can contribute to a so-called wake flutter. The odd
part ofC is the Corriolis effect and in most cases, stabilizes the system. The matrixK +Ka

is the augmented stiffness and is no more symmetrical because of the aerodynamical forces.
A classical flutter instability can appear if two eigevalues are crossing each other. Let us give
a simple example. It corresponds to a pitching or a galloping movement of the airship. The
eigenvalues have been computed for several values of the angle of attackα and taking into
account the aerodynamical forces due toḋz and α̇. Furthermore, the lift and the pitching
moment coefficients have been computed (see figure 3). One can see on figure 3 left, that the
airship is stable –from the static point of view– versus a pitching movement (cm≤ 0). The
aerodynamical centre is located in the front part of the airship. The drag coefficient has been
plotted on figure 2. Even if it decrease, it is not meaning full beacause of the scale used. But
concerning the aerodynamical damping it is quite zero for very small angle of attack. Then it
is slightly negative forα ' 4. But it becomes positive for larger value ofα (see on the right
figure 3).
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Figure 3: Left: lift and pitching moment at the center versusα. Right: imaginary part ofλ
for a pitching movement (green) and a galloping (blue)

§6. Conclusion

A simplified method for studying the aeroelasic stability of an axisymmetrical body is sug-
gested. The method enables to take account the small perturbation with respect to the axis of
symmetry in an aeroelastic analysis.
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