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COUPLINGS FOR
MULTICOMPONENT SYSTEMS

Rosario Delgado, F. Javier LOpez and Gerardo Sanz

Abstract. We consider multicomponent systems which can be seen as interacting particle
systems. For two systems with state spXcandY respectively and a general subset

K C X x Y we give conditions on the rates of the processes to ensure the existence of a
K—coupling. We apply our results to obtain conditions for the stochastic comparison in
terms of workload of tandem Jackson networks.
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81. Introduction

We begin with the definition of interacting particle systems to be considered in this paper.

Interacting particle systems are Feller proceggést > 0} with state spacX CVS, where
V is a countable set a8 C Z9, d > 1. Srepresents the set of particles avidepresents

the set of values each particle can take. Basic notations and definitions of such processes can
be seen in [1] and [7]. The evolution of these processes is defined through their transition

rates. Givem € X, we consider that there are two kind of changes involving a pastiel&:
changes of particlg from n(x) to a € V and changes of the p&ix, x+ k), with k € Ny, from
(n(x),n(x+Kk)) to (r,s) € V2, wherex+ Ny is the set of points that can change paired with
ForacV ora= (k, (r,s)) € Nx x V2, we denote by, (x,n) the rate of change of the process
from n to nxa, Where, forac V,

Nxa(y) = {n(y) if y#X,

a if y=x,
and fora = (k, (r,s)) € Nx x V2,

n(y) ify#xx+Kk,
Mxa(y) = r ify =X,
S ify = x+k.

Therefore, the generator of the particle system with rejés 1) is defined on Lipschitz
functionsf on X as follows:

mwzgngMMM4mw %MmWW&WW}(D

acNyx V2



224 Delgado et al.

satisfying the usual existence and unigueness conditions (see [1]). We will work with two
processe$X,t > 0} and{Y;, t > 0}, with the same set of particl&sbut with possibly dif-

ferent set of value¥ andW. Therefore, the state spaces(¥) is X = VS and the state
space of(Y;) is Y = WS. A coupling of these processes is defined as a procesé ol

whose marginals are the original processes. When the coupled process is Markovian, it is
called Markovian coupling. IX =Y and it is endowed with a partial ordet a coupling

of the processes is said to be order-preserving if whengyer Yy thenP(X <Y;) =1 for

allt >0. LetK C X xY. A K—coupling of the processesX,t > 0} and{Y;,t > 0} is

a procesgZ;,t > 0} on X x Y whose marginals are the original processes and such that if
(X0, Yo) € K thenP((X, ¥%) € K) =1 for allt > 0. Note that, ifX =Y, a order-preserving
coupling is aK—coupling withK = {(n,€) e X xY : 1 < &}. In general, wheiX =Y, if

the relation<g on X given byn <k & if (n,£) € K is a partial order, then K—coupling

is an order-preserving coupling with respect to the partial order but this is not always

the case. In [8] the authors give necessary and sufficient conditions on the transition rates
of two continuous-time Markov chains with countable state spaces for the existence of a
K—coupling, thus solving a problem stated in [4]; they also show that the coupling can be
chosen to be Markovian and they simplify the construction of such a coupling when the state
spaces of the chains are the same. In [2] we gave conditions for the stochastic compara-
bility of two interacting particle systems, whose rates verify a certain separability condition
and used this results to improve and extend the results on queueing networks given in [5]
and [6]. In this work we find general sufficient conditions for the existence of a Markovian

K —coupling of the processg%,t > 0} and{Y;, t > O} with generator€; andQ; as in (1),
respectively (for the proofs of the results, see [3]). We remark here that we do not impose
any condition on the sé or the rates of the processes c2.

§2. Results

Let K be an arbitrary subset & x Y andc!, ¢ the rates of the processé€¥;, t > 0} and
{Y;,t > 0} with respective state spack¥sandY. Define, for eact{n,£) € K, andx € S, the
sets

EX={aecVU(NyxxV?) :ci(x,n) > 0},
F*={aec WU (NxxW?): (x,&) > 0},
G* = EXUF”,
R = {ae EX: (xa &) €K and((nxax,é) ZKor[a=(k(r,s)) € Nyx V2,
(Mxas€) € K and(nxsia,.,06) €K ) },
S= {ae FX: (n,) € K and((n,éxax) gKor[a=(k(r,s)) € Nyx W2,

(0. &a) € Kand(n. i, ) €K]) }.

where, ifac V orac W, thena, = a and if, a= (k, (r,8)) € Ny x V? ora= (k, (r,8)) €
Ny x W2 thena, = r. Consider a network whose nodes are the point&of Define the
arrows of the network as follows: there is an arrow frono a (that is, (b, a) € 27*) if
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o (Mxa, Exp) €K, forac EX, be FX,

e for all c € F* such thatnxp, éxc) € K, it holds (1xa, Exc) € K, fora,b € RX,

e for all c € EX such thai{nxe, &xa) € K, it holds (1, éxp) € K, fora,b € S,
Forxe S, ke Nyand(n,§) € K, define the setB, x andCy by

Byk = {(r,8) € V2ZUW?: (k, (r,9)) € RUSY}
and

Cek = {(r,5) € V2: (k,(1,5)) € E*, 3b € S with arrow fromb to (k, (1,s)) }
u{(r,s) € W2: (k,(r,9)) € F*, 3a € R  with arrow from(k, (r,s)) to a}.

Byxk can be interpreted as the set of paired changes involviagd x + k for one of the
configurations % or &) which take the coupling out d€, wherea<,  can be interpreted as
the set of paired changes involvixgand x + k than can be used in the construction of the
coupling to avoid an exit fronK for x, due to a change of the other configuration. We note
that all the set&X, FX, G, RX, S, &%, Bxx andCyx depend on the configurations and

&, although this fact will not be reflected in notation for the sake of simplicity. We define
a network flow problem in the networfG*, &), for fixedx € Sand (n,&) € K, and we

will show in Proposition 1 that the feasibility of the problem implies the existence of the
generator of a MarkoviaK —coupling of the processes. We also give the explicit form of
such a coupling in the proof of the proposition. The statement of the network flow problem
is as follows: First of all we defing forac G*asti =1ifac EXnV orae F*NW and,
fora= (k,(r,s)) € EXN(Nx x V2) ora= (k, (r,s)) € F*N (Nx x W?), as

r) & Bxik —k
r) € Bxik ks
1) & Bxik ks (IS) € Cxk, (S,1) & Cuyk,—ks
r) & Byik—k» (1,S) & Cxk, (S,1) € Cuyk—ks

if (r,s) € By, (S,
if (r,s) & Byk, (S,
if (r,s) & Bk, (s,
if (r,s) & By, (s
1/2 otherwise

—
D X
|

O L O Bk

)

The offer of the pointd € F* is of = tXcZ(x,&) (and must be sent if they are 8f) and the
demand of the pointsc EX is dX =tXcl(x,n) (and must be satisfied if they aref¥). We can
state this network flow problem equivalently as: there exists a function (fidw)* — R
verifying
0< X — fi, <o VbeF*\ S
acGX acGX
0< ) fla— > fap<da VaeE"\R,
bEGX bETX
fla— > fap=0p VbeS )
acGX acGX
o — p=0dy VaeRy
beGX beGX

f$>0 VabeG~
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Define the relationship in G* asa < b whenever there is an arrow fromto ain the network
(G*, 7). Itis easy to see that is a pre-ordering ifG* but not necessarily a partial order,
sincea=<b, b <ado notimplya=b. A setl is called< —increasing ifae ' anda=<b
imply b e . In the same way, a s€tis < —decreasing ihe ' andb <aimplybeT.

Proposition 1. If for any xe S and(n, &) € K the network flow problem (2) is feasible, then
there exists a Markovian Kcoupling of the processes which can be constructed in terms of
the solution ¥ of (2).

We now give conditions on the rates of the processes for the existence of a solution of the
network flow problem.

Proposition 2. The network flow problem (2) is feasible if the next two conditions are satis-
fied:

(a) if I is a=< —increasing subset of Gthen

da < Oz, (3)
acl NRX acl NFX

(b) if I is a=< —decreasing subset of'Gthen

Z 0 < di. (4)
acl N acl NEX

We now state the main result of the section:

Theorem 3. Consider two interacting particle systems with ratésand &. If for every
x€S, (n,8) e K, the rates verify the following conditions:

(i) forall < —increasingl” C G* such thatva € ' NE* we have(nxs, &) € K, it holds:

trea(xn) < ¥ BEAx &), (5)
a; a~a a; a~a
(i) forall < —decreasind” C G* such thatva € ' "F* we have(n, &a) € K, it holds:
tica(xn) > Y Bea(x.) (6)
a; a~a a; a~ra

Then, there exists a Markoviantcoupling of the processes.

83. Application

In this section we use Theorem 3 to give sufficient conditions for the stochastic comparison of
tandem Jackson networks. We begin with the definition of such networks. We will work with
tandem Jackson networks defined as follows. Therdlastations located on a row, each one
having two substations; andy;, stand for substations 1 and 2 of statiph=1,...,M. The
evolution of the network is as follows:
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— customers arrive from outsidexatat ratei, i = 1,...,M;

— the service time at substation is exponentially distributed with parameté'{, i =
1,...,M;

— after being served at substatigrcustomers either go to substatlyleth probability
Pxy Or leave the network with probability 1 pyy,, i = 1,...,M;

— the service time at substatign is exponentially distributed with parameté'{, i =
1,....M;

— after being served at substatigrcustomers either go to substatigrwith probability
Py, » 90 to substatiow; 1 with probability py,x ., or leave the network with probability
1-pyx —Pyx i =1,...,M, Xpmp1 = X5

— all random quantities above are independent.

Let n be a configuration of a network, that {§(x),n(yi)) is the number of customers
at substations;, y; of stationi. Theworkloadof stationi in a configuration is defined as
Ti(n) =n(x)(8}+85) +n(yi)dh. We say that a network has smaller workload than another
networkn’ whenevefT;(n) < Ti(n’) for alli = 1,...,M. Our objective is to give conditions
on the rates of two stations (whose evolutions will be writtgn) and (1) respectively)
which assure the stochastic dominancgmf) by (1{) in terms of the workload. In other
words, ifTi(no) < Ti(ng) foralli =1,...,M, then

P{Ti(n) <Ti(m{) foralli=1,.... M} =1  Vt>0.

In this case, we writén:) <workload (Th) We apply Theorem 3 tén;), (1{) with the set
K={(n,n"):Ti(n) <T(n), Vi=1,...,M}.

Theorem 4. Let(nt), (n{) be two tandem Jackson networks such jat & fori=1,...,
The following conditions are sufficient fén:) <workioad (1{): for all 1,1’ with Ti(n)
Ti(n'), foralli=1,...,M, we have

(i) forallisuch thaté‘il + 85 > AT, > 8 (whereAT, = Ti(n') — Ti(n) and ¥ = ym):

M.
<

71(pYi71Xi - P/yixi )"+ 5& Pyi_1x 1{AT; <8} +Bi
71(p§’i—lxi - pyiflxi)Jrl{A'l'i,lzé;l} +6; p;/ixi +B,
(ii) forallisuch thatAT; < 8} (whereAT; = Ti(n’) — Ti(n) and Xu+1 = X1):
ﬁi + Sé_l(pYi—lxi - P’yi_lxi)+ + 5£(pyixi - P’yixi)+1{mi<5il}
S Bi/ + Sé_l(p;i_lxi - pYi—lxi )+1{A‘|'i7125£*1}7

Pxyi < Py
and, ifATi 1 > &+ 85,
p)’iXi S p;/ixi
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and, ifATi;q < 811+ 85+L,
(Pyixij1 < pg/iXiJrl’ Pyix = pﬁaxﬂ or  (Pyx,1 > pg/ixi+1’ Pyix;  Pyix 1 < pg’ixi + pg/iXHl)'
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