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A REFLECTED FBM LIMIT FOR
ASYMPTOTICALLY BALANCED FLUID MODELS
WITH HEAVY TAILED ON/OFF SOURCES

Rosario Delgado

Abstract. We consider a family of non-deterministic fluid models similar to that intro-
duced by Harrison in [3] as the deterministic fluid analog for an open multiclass net-
work, but with the difference that we suppose the process of external arrivals to be a non-
deterministic aggregated cumulative packet process generated by a large enough number
of heavy tailed ON/OFF source, Scaling in time by a factar and in state space con-
veniently, and lettindN andr approach infinity (in this order) we prove that the scaled
immediate workload proces®nverges to &flected fractional Brownian motion (rfBm)

under heavy traffic.
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81. Introduction

The presence of long-range dependence in broadband network traffic and that of self-simila-
rity in modern high-speed network traffic lead to the question of finding adequate traffic
models for these situations. One simple physical explanation for this kind of phenomenon
is the superposition of many ON/OFF sources with strictly alternating ON- and OFF-periods
and whose ON- or OFF-periods have high variability. Tagqu et al. prove in [4, Theorem 1]
the convergence of the aggregate cumulative packet process to the fBm (a self-similar and
long-range dependent process). It is known (see [2]) that this convergence carries over to the
stationary buffer content process: the scaled workload process converges to the fBm, reflected
appropriately to be non-negative, for fluid models with only one server or station and only
one fluid class, without reentering.

In this work we deal with the same question in a more general setting. Specifically,
we consider a fluid model for a network withstations an fluid classes (withtK > J),
with a single server and an infinite buffer at each station, feedback and FIFO (first-in-first-
out) discipline. We suppose (and this gives the difference with the model considered by
Harrison) that the process of external arrivals is a non-deterministic aggregated cumulative
packet process generated by a large enough number of heavy tailed ON/OFF sources. We
prove, by following the methodology of Williams in [6], that after adequate scaling, the
immediate workload process converges teftected fractional Brownian process (kather
than to a reflected Brownian model), by generalizing the result of [2].
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The paper is organized as follows. In Section 2 some preliminares, notations and defini-
tions are introduced. The fluid model that we consider in this work is introduced in Section 3.
In Section 4 the main result of the paper is given. That result is a statement about the asymp-
totic behavior of the fluid model in which we give sufficient conditions for the convergence
of the scaled immediate workload process, under asymptotic balancing (heavy-traffic), to a
reflected fractional Brownian motion.

82. Preliminares, notations and definitions

2 —limp_« X" = X denotes theonvergence in distributionn ¢ of stochastia-dim. pro-
cessexX" to X and P—lim_.. X" = X its convergence in probabilitjunif. on compacts).

We will uselim to denote the limit in the sense of the convergence of the finite-dimensional
distributions. We now introduce a process knowrreftected fractional Brownian motion
(rfBm), that starts and behaves like a fractional brownian motion inside the positive orthant,
but that is not allowed to exit it because of instantaneous “reflection” at the boundary given
by faces. Its precise definition is as follows:

Definition 1. A rfBmonS= Ri associated with datg, H, 6, I, R), wherex, 6 € S H €
(1/2,1) andl' andR areJ x J matrices, beind a positive definite one, is &dimensional
procesV = {W(t),t > 0} such that

(i) W has continuous paths alid(t) € S= Ri forallt >0, a.s.,

(i) W= X+RY, a.s., withX andY two J—dimensional processes defined on the same
probability space aX, verifying:

(i) X is a fBm with associated data, H, 6, ) (that is, it is a Gaussian process with
E(X(t)) = x+6tand CovX(t), X(s)) = £ (121 +-" — |t —s2")T),

(iv) Y has continuous and non-decreasing paths, and for pach,Y;(0) = 0 andY; only
increases whew is on faceF; = {y € S=RJ :y; =0} (i.e. [’ Liw;(s>0y dYj(s) = 0).

A pair (W,Y) verifying (i), (ii) and (iv) is called asolution of the R-regularization prob-
lem of X Proposition 4.2 of [5] shows that under condition (HR) Rrfthat implies the
completelys” condition) we have strong pathwise uniqueness of the solution d?-tlegu-
larization problem o, being

(HR) Assumption on matrix R: R can be expressed &g+ © with © a J x J matrix such
that|@®|, that is the matrix obtained fro@ by replacing all its entries by their absolute
value, has spectral radius less than 1.

83. The fluid model

Let a network composed hystations with a single server and an infinite buffer at each one,
that processes continuous fluid. We distinguish among fluid of classesH, with K > J.

The many-to-one mapping for fluid classes to stations is described Byxtikeconstituency
matrix C. For eactk let s(k) denote the station at which clasfluid is served. By following
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the ideas of [4], first of all suppose that there is only one external source ofkctasd
that arrives to the network, and that the source can be ON or OFF. This source generates a
stationary binary time serigdJi(t), t > 0} whereUy(t) = 1 means that at timtethe source is
ON (and it is sending fluid to the network, at a traffic rafe> 0), andUx(t) = 0 means that it
is OFF. Assume that, independentlylothe length of the ON-periods are i.i.d., those of the
OFF-periods are i.i.d., and the lengths of ON- and OFF-periods are independent. The ON-
and OFF-periods lengths may have different distributions. Denote the distribution functions,
the mean values and the variances of the ON- and OFF-periods, respectialanimf, fi
andfip, 62 ando?. Assume that as— o, 1—Fy(x) ~ x P1L1(x) and 1- Fa(x) ~ x P2 L5(x)
for somef; andp; in (1, 2), andL,, L, > 0 slowly varying functions at infinity.

Suppose now that for each cldsfluid there areN i.i.d. sources, each one with its own
binary time serie.{Ué“) (t),t >0}, n=1,...,N, and that they are all independent. If all
sources where ON, clakgluid would arrive at deterministic ratq'g‘ > 0, and the cumulative

external fluid trafficup to timet would be deterministic and equaldxé\‘t (this is the case for
the fluid model introduced by Harrison in [3]). Let

t N
0o [ S(Surw)a &

be the cumulative external claks$luid generated up to time(by theN sources). LetN =
(..., of)T. We assume that fluid at each station is processed in a firs-in-first-out (FIFO)
basis and that our service disciplinenisn-idling

Suppose that cladsfluid is processed at a constant rate> 0 (independent oN) if
stations(k) were never idle and the server devoted all of its attention to &ldsstm, = 1/
be themean service ratéor classk fluid, m= (my,...,mg)" andp = (ug,...,ux)". Let Ry
be the proportion of cladsfluid that leaving statiors(k) goes next to statios(¢) as clas¥
fluid. We assumé& = 0 and thaP = (H<é)||<<,z=1 is a substochastic matrix with spectral radius
less than one. LeD = (Ix —PT)~2.

The following descriptive processes will be used to measure the performance of the
gueueing network:

The K—dimensionafiuid queue 2, defined by:Z}(t) is the amount of clask fluid in
queue or being processed at timeThe immediatevorkload WN, a J—dimensional pro-
cess defined bijN (t) is the amount of time required for servgto complete processing
of all fluids in queue (or being served) at statipat timet. AssumewN(0) = zZN(0) = 0.
The J—dimensionalcumulative idletime process'y defined by:YjN (t) is the cumulative

amount of time that server at statiptas been idle in the time intervi@, t], that is,YJ-N (t)=
N 1jwN(s)—0y ds Other auxiliar processes are the following: A&, defined byAl (t) is the
]

total classk fluid arriving to stations(k) up to timet, including both feedback flow and
external input, andN defined byDE(t) is the total amount of cladsfluid departing sta-
tion s(k) (both being routing to other station or leaving the network), up to timéssume

AN(0) = DN(0) = 0. LetFN €'pTDN, andLN E'cmAN, whereM %' diagimy, ..., mk).



218 Rosario Delgado

These processes are related by the neodiel equationsFor anyt > 0, ife= 1€ RY,
ANt =EN) +FN (), WN(t) =LV (1) —et+YN(t), ZV(t) = AV(t) - D (1),
DN(t+CTWN(t)) = AV(t), WN(t) =CMZN(1).

We now consider a double sequence of fluid models having the same basic structure as des-
cribed before. The associated processes and parameters are denoted byr aqopiNg
whereN is the number of sources, that tends to infinity, anslthe factor of scaling in time

and tends to infinity through a strictly increasing sequence of strictly positive real numbers.
Suppose tha®, u = (ug,...,ux)" andm= (my,...,mg)" are allowed to change withbut

not with N. We use the notatioR", u", m’, M" andQ'". We defineA"N to be the unique
K—dimensional vector solution to theffic equation

AnN _ ar,N .al + (Pr)T Ar,N (2)
fia+ fi2 ’
AN is interpreted as thelass k fluid arrival rate due both to external and internal flow traffic
We also define théuid traffic intensityfor stationj as

r,N def
p- =

i AN, forall | (in matricial form,p"™ =CM"A™N).

kserve;t station
In order to define thecaled processeassociated to the fluid model, we must introduce
previously some notation, by following [4]. For afy= 1,2, seta; =I'(2— B;)/(Bj — 1) and
b = limy_wtP2P1Ly(t) /La(t). 1f 0 < b < o setBmin = B1 = Po, L = L, and we define
GI'Zm _ Z(ﬁzzalb+ﬁfa2)
| ~ ~ 3 :
(,ul-i-liz) r(4—ﬁmin)
If b=0orb= o, setL = Lyjn, whereminis the index 1 ifo = « and is the index 2 ib = 0;
maxdenoting the other index, and

Glizm _ 2.’Jr%axaf'ﬂin

(Nl+l~12>3r(4—ﬁmin).
In either casefmin € (1, 2).

Let we defineH %' (3= Bmin)/2. We have thaH € (1/2,1). Now we can define the
scaled processedenoted with a hat:

EN() £ VN Er’N(rtr)H_|_(1x/r:(lrr)t ‘71%‘5 AN() LTYN W
BN (t) £ VN W7 ErN ) TN F“N(rtr)H—Lg/F’Z’()rT))u,Nrt’
W =N 2 N
R AL
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Scaled equations will be used to determine the limit behavior of the normalized immediate
workloadW"N process. These equations are obtained by substituting scaled processes into
model equations:

AN () =EN ) +FN (D) (3)
L"N(t) =CM A™N(t) 4)
WoN(t) = LEN (1) + 9N () + 7Nt wherei™N €' VN (rH Ll/;)) (5)
WrN(E) =CcM 27Nt (6)
ZN(t) = AN(H) - BN (D) (7)
FE@) = (P)TD™MN () (8)

Now we reduce the system of scaled equations as follows: by substitdthdgrom (7)
into (8), and in turn substituting this expression into (3) we obtain

AN =g (BN - (P)T 2N (©)
Substituting (9) into (4) and the resulting into (5) yields
WiN(t) = EN) —CM Q' (P)T 2°N(t) + N (b), (10)
where
EN) Elom QEMN®) + 7N (12)

We now introduce, like in [6], & x J matrix A"N by Ak’j = /ll?N/pJ-"N if s(k) = j and O
otherwise. We need to impose an assumptiof'dh

(HA"N) Assumption on matrix A"N: (satisfied ifK = J)

CM' Q' AN s invertible for allN andr (big enough). (12)
By using matrixA"N we can define processés andn"N by
N E2N G - AN, AN oM (P)TENY,  (19)

and aJ x J matrix G*N E'cMr Q" (P)TA™N. Then,l; +G™N = CM' Q' AN and we can
rewrite (10) as

WEN(t) = EPN(t) — GPNWIN () + AN (1) + YN (1), and withR™N = (13 + G"N) 1

WN (D) = RN (EN) +7™ 0 + 7N 0)) = XN + RN, 14)

with XN (1) RN (EHN(t) +ﬁ'=N(t)). (15)



220 Rosario Delgado

84. The main result

Before to state the main result of this work, we need to introduce some assumptions:

(HamP) Assumptions ona™N, mi and P':
We will assume that there are two-dimensional vectore; > 0 andm > 0, and a
K x K matrix P, substochastic and with spectral radius strictly less than one, which

satisfy: for anyr (big enough)da’ = I|m a™N, Ja —rllm o, Hm_rhm m’, and
P = rI|m P". Therefore, there eX|slz$Ir = ,\Illm AN A= rI|m A, Q= rI|m Q(=

Ik —PH)™),G = lim G"N, G = lim G" andM = lim M".
N r r

(HA"A) Assumption on matricesA" and A: (satisfied ifK = J)
MatricesC M" Q" A", for r big enough, an@ M QA are invertible (therefore, matri-

cesR &' (1,4 G") " andRE' (1;+ G) * are well defined).

(AB) Asymptotically balanced (heavy-traffic) fluid model assumption: there exists
y € R such that

lim <I|m VN (r"' Ll/Z())r> (_ lim (lim 7" )) y.

N—oo r—oo ‘N—oo

The final assumption that we consider is a formstdte space collapsevhich relates
scaled immediate workload and fluid queue length processes.

(SSC) Assumption of state space collapsegsatisfied ifK = J)
For anyr (big enough), there existS = P — lim &"N € RX, and I|m£ =0.

N—o0

The main result uses the following lemma that lean on Theorem 1 of [4].

Lemma 1. In our setting, under (lemP) and (SSC), for any r (big enough), there exists

(&) = lim (E™.&™N) and &-lim (E",&") = (Bn,0),

N—oo
where By is K-dimensional fBm with associated ddfa 3bm» 0, 62, diag(e)?).

Remarkl. In Theorem 2 below we will impose condition (HR) for matrid@s(for r big
enough) andR. We note that ifK = J this assumption is trivially accomplished B, and
also byRif P has spectral radius less that one.

Theorem 2. In our setting, assume @&V), (HamP), (HA'A), (AB), (HR) for matrices
R, for r big enough, and R, and (SSC). Then, for any r (big enough) there\él)r(iAst
lim W™N, X" = lim X"N, ¥" = lim Y"N, there also exist W= 2 —lim W', X = 2 —lim X',

N—oo N— o0 N— o0 r—oo r—o

Y =2-lim Yr W = X+RY, and it is a rfBm on S R with associated dat40, H =

r—oo

%, Ry, I, R), where

I = 02, RCMQdiag «)’Q"MC' R'.
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Proof. We recall thatV™N(t) = X"N(t) + R-NY"N(t), with
)A(r.N(t) _ Rr,NC Mr Qr (E“N(t) _ (Pr)T é‘r*N(t)) + Rr,N V,Nt’

by (14), (15), (11) and (13). A
By Lemma 1 and the Continuous Mapping Theorem, we obtain the existerXe-ef
lim X™N, X = - lim X', and thaiX (t) = RCM QB (t) + Ryt, that is aJ-dim. fBm with

N—co

associated dat(aO,H = b Ry,T), T = 62, RCMQdiag()2Q"MCTRT.
By the other way, we can write

WeN(©) = (XN + (RN = R) YN0 ) + R YN (). (16)

SinceR' is completely.” by (HR), we can apply thescillation inequalitygiven in Lemma 1
of [1] to obtain that there is a constaBg > 0, that only depends oR', such that for any
T >0, if define Os¢w(-), [0, T]) as  sup |w(t) — w(s)|, we have that

0<s<t<T

Osc(wN 0T)<CRrOSO<XrN (R'vN_Rr)\?va(-),[o,T]) (17)

By hypothesisR"N converges t&R asN — . Consequently, there exisi such that for
anyN > Np, Cr [R"N —R'| < 1/2. Thus, (17) implies that for any(big enough), ifN > N,

90l = 05V, 0.T]) < 2C O5q X1, [0.T]) < 4G [K 0 (19

Due to the continuity oE" (that implies the continuity oK"), we have that, for anff >
0, for anyr (big enough), for any¥ > 0, there exisK; > 0 andN; such that, ifN > Nj,
P(|[X"N()|l; < Ke/(4Cr)) > 1—&. By using this fact, (18) gives that K > Ny V No,
P(|[Y"™N(-)||; <Ke) > 1—e&. Furthermore, there exish such that for any > N, [R\N —
R| < /K¢, and as a result, for arly > max{No, N1, N>},

PR =R)IY™NO)[ly 2 €) <e,

Il >
thatis, P—lim(R* —R) Y™ = 0.
Let we defineQ"N asW'™N — (R"N —R')Y"N. Then, if they exist, we have th@wér*N =
lim W™, and by (16) we also have tha™ = X" + R'Y™, with R" verifying (HR)
for anyr (big enough), anK'" = IiFn X"N having continuous paths. Then, there exists a

unique strong pathwise solution of tRe-regularization problem o)f(r that coincides with

(’\Illm N, I|m YrN). If we denotehm YN by Y" and I|m QN = I|m WN by W', we

have that the _unique solution of th@ -regularization problem oK is (Wr Yf) and then
W' = X' +RY'. This fact implies thatV", X" andY" satisfy hypothesis of thevariant
principle of Theorem 4.1 in [5] with matriXX’, taking into account tha@—rlim X' =X,
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lim R = R, andR is a Completely. matrix, by (HR). We have tha{(V:VH )?r,\?r)}r in-

r—oo

herits tightness from sequen@&r}r, and consequently, by (HR) (see Corollary 4.3 of [5]),
we obtain that there exis:'@—rliﬁrrgo (Wr, >:<’, \?r) = (W, X,Y), whereW = X +RY and con-
ditions of Definition 1 are satisfied. Therefow,is a rfBm onS= R with associated data
(0,H = 3bnin Ry T R). D
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