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APPLIED TO SINGULARLY PERTURBED

ELLIPTIC PROBLEMS OF

CONVECTION-DIFFUSION TYPE

C. Clavero, J. L. Gracia and E. O’Riordan

Abstract. In this work the defect–correction technique is used to solve some singularly
perturbed elliptic boundary value problems of convection-diffusion type. In [3] it was
proved that the use of standard defect–correction technique allows one improve the order
of convergence of stable low order finite difference schemes. Nevertheless, the analysis
of the uniform convergence is difficult for 1D problems and at the moment we do not
know of any theoretical result proving uniform convergence for general 2D elliptic prob-
lems. In [4] a variant of this approach was proposed in order to simplify the analysis
for 1D problems of convection-diffusion type, proving almost second order uniform con-
vergence of the method. In this paper we show numerically that it is possible to extend
the parameter-uniform method given in [4] to the case of a 2D elliptic boundary value
problem.
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§1. Introduction

Singularly perturbed problems are characterised by the presence of a small parameter multi-
plying the highest order derivatives of the differential equation. The presence of the singular
perturbation parameter results in the solution of these problems having a multiscale charac-
ter. Narrow regions (boundary layers) appear close to the boundary where the solution has
large gradients. So, it is desirable to design special numerical methods which generate nu-
merical approximations converging to the exact solution independently of the value of the
singular perturbation parameter. These methods are called uniformly convergent methods or
parameter uniform methods.

In [2] some parameter uniform fitted mesh methods were presented for problems of this
kind, using (almost) exclusively a special class of meshes introduced by Shishkin [9]. These
meshes are simple to construct, are piecewise uniform and condense half the mesh points
into the boundary layer regions. In the literature there are many first order finite difference
schemes used to approximate efficiently a wide class of 1D and 2D singularly perturbed
problems. Moreover, it is possible to apply some classical techniques to improve the uniform



412 C. Clavero, J. L. Gracia and E. O’Riordan

order of convergence in the 1D case. Nevertheless, at this moment, for convection–diffusion
elliptic problems given by

Lεu≡ ε∆u+a·∇u−bu= f , (x,y) ∈Ω = (0,1)2, u = g on ∂Ω, (1)

we only know [6], where the author proves almost second order uniform convergence in the
maximum norm. In that paper, the Richardson extrapolation technique was applied to the
upwind operator defined on a special Shishkin mesh. It is well known that the Richardson
extrapolation technique requires one solve two discrete problems. The basic discrete problem
associated with the original mesh and a second discrete problem associated with a new mesh
composed of the mesh points of the original mesh and their midpoints. Note also that the
analysis of the uniform convergence of this technique employs an asymptotic expansion of
the error in powers of the discretization parameter.

This paper is motivated by our interest in high order parameter uniform finite difference
schemes. Here, we consider the defect–correction technique to achieve almost second order
uniform convergence. This technique was applied in [3] for 1D problems, where the upwind
operator (stable) and the central difference operator (unstable) were combined; unfortunately,
the analysis of the uniform convergence, proposed in that work, is complicated and it appears
difficult to extend to 2D elliptic problems. In [4] a new basic stable scheme was proposed,
simplifying the analysis of the uniform convergence in the case of one dimensional problems.

The paper is structured as follows. In §2 we describe this new method and in §3 we show
that it can be extended to the 2D case. The numerical results suggest almost second order
uniform convergence of the numerical method. Henceforth,C denotes a positive constant
independent of the singular perturbation parameterε and the discretization parameterN.

§2. Defect correction technique for 1D problems

In this section we consider 1D boundary value problems of convection–diffusion type given
by

Lεu≡ εu′′+au′−bu= f , x∈Ω = (0,1), u(0) = u0, u(1) = u1, (2)

where we assume that the singular perturbation parameter can take arbitrary small positive
values, 0< ε ≤ 1, the coefficientsa,b, f ∈C5(0,1) and also thata≥ α > 0, b≥ 0,∀x∈ [0,1].
The solution of (2) has a boundary layer atx = 0 with a widthO(ε ln(1/ε)); moreover (see
[2]) its derivatives satisfy the bounds

|u(k)(x)| ≤C(1+ ε
−k exp(−αx/ε)), 0≤ k≤ 4. (3)

To prove uniform convergence of the numerical scheme, it is convenient to use an appropriate
decomposition of the exact solutionu. Then, following [2], we writeu = v+w, wherev and
w are the regular and singular components of the exact solution respectively. They are the
solutions of the following boundary value problems:

Lεv = f , v(0) = v∗(0), v(1) = u(1), Lεw = 0, w(0) = u(0)−v∗(0), w(1) = 0,
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wherev∗(0) is taken so that

|v( j)(x;ε)| ≤C, 0≤ j ≤ 3, ε|v(4)(x;ε)| ≤C, (4)

|w(x;ε)| ≤Cexp(−αx/ε), |w( j)(x;ε)| ≤Cε
− j , 1≤ j ≤ 4. (5)

To approximate the solution of (2), we consider a finite difference scheme defined on a
Shishkin mesh. LetN be the discretization parameter; then, the Shishkin mesh is defined
by using the transition parameter

σ = min{1/2,(3/α)ε lnN}, (6)

and dividing uniformly each one of the subdomains[0,σ ], [σ ,1] into N/2 intervals. Then,
the set of mesh points̄ΩN

ε is given by

x j =

{
jh, if 0 ≤ j ≤ N/2,

σ +( j−N/2)H, if N/2≤ j ≤ N,
(7)

whereh= 2σ/N is the fine mesh step andH = 2(1−σ)/N is the coarse mesh step. Below, we
denote byh j+1 = x j+1−x j for j = 0, . . . ,N−1, andh̄ j = (h j +h j+1)/2 for j = 1, . . . ,N−1.
On this piecewise uniform mesh, we consider the following hybrid three point finite differ-
ence scheme:

LNU j ≡ r−j U j−1 + rc
jU j + r+

j U j+1 = f j , 0 < j < N, U0 = u0, UN = u1, (8)

where the discrete operator is defined by

LN ≡


LN

cd∗, if 1 ≤ j < N/2,

LN
cd∗, if N/2≤ j < N and ‖a‖N−1 < ε,

LN
up, if N/2≤ j < N and ‖a‖N−1≥ ε.

The central difference operatorLN
cd∗ (slightly modified at the transition point) and the upwind

operatorLN
up are given by

LN
cd∗U j ≡ εδ

2U j +a jD
±U j −b jU j = f j ,

LN
upU j ≡ εδ

2U j +a jD
+U j −b jU j = f j ,

where

δ
2U j =

1
h̄ j

(
U j+1−U j

h j+1
−

U j −U j−1

h j

)
, D+U j =

U j+1−U j

h j+1
,

D−U j =
U j −U j−1

h j
, D±U j =

h j

h j +h j+1
D+U j +

h j+1

h j +h j+1
D−U j .

Theorem 1(See [4]). The error associated with the hybrid scheme (8) satisfies

|u(x j)−U j | ≤

{
CN−1, if ‖a‖N−1≥ ε,

CN−2(lnN)3, if ‖a‖N−1 < ε,
(9)

and therefore it is a first order uniformly convergent method.
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To improve this order of uniform convergence, we apply the defect–correction technique.
Note that the use of the hybrid scheme instead of the upwind scheme allows one prove al-
most second order in the case‖a‖N−1 < ε, and therefore in this case it is not necessary to
modify the numerical solution given by scheme (8). Otherwise, it is necessary to correct the
numerical solution in an appropriate way to obtain second order convergence rates. In [4] the
following approximation to the solution of problem (2) was proposed

Û = U +ϑ , if ‖a‖N−1≥ ε,

Û = U, otherwise.
(10)

Hereϑ is the solution of the discrete problem

LN
ϑ = f −LN

cdU in Ω, ϑ = 0 in ∂Ω, (11)

whereLN
cd is the classical central difference operator, which is defined by

LN
cdZ j ≡

{
LN

cd∗Z j , if j 6= N/2,

εδ 2Z j +a jD0Z j −b jZ j , if j = N/2,

andD0Z j = (Z j+1−Z j−1)/(h j+1 + h j). In [4] it was showed that ifD± is used instead of
D0 at the transition point to find the corrected solution, then the resulting numerical method
is not parameter-uniformly convergent. The numerical solution of scheme (10) satisfies the
following convergence result.

Theorem 2(See [4]). The error associated with the defect–correction scheme satisfies

‖u−Û‖ ≤CN−2 ln3N,

where u is the solution of the problem (2) andÛ is the numerical approximation given in (10).
Therefore, the new method is almost second order uniformly convergent.

To corroborate the theoretical result of convergence proved in Theorem 2, we consider
the following test problem:

εu′′+u′ =−ex(1+ ε), x∈ (0,1), u(0) = 1, u(1) = 1−e, (12)

whose exact solution isu(x) = (e−x/ε −e−1/ε)/(1−e−1/ε)+1−ex. Then, for any value of
N, the maximum pointwise errorsEε,N and theε–uniform errors are calculated byEε,N =
max

i
|u(xi)− Ûi |, EN = max

ε
Eε,N respectively, whereu is the exact solution of (12) and̂U

is the numerical solution of the finite difference scheme (10). From these values the orders
of convergencepε,N and the order ofε–uniform convergencepN are calculated bypε,N =
log(Eε,N/Eε,2N)/ log2, pN = log(EN/E2N)/ log2.

Table 1 displays, for problem (12), theε–uniform maximum errors and theε–uniform
orders of convergence for the range of valuesε = 1,2−2,2−4, . . . ,2−30. From these results
we deduce the almost second order uniform convergence in the maximum norm, which is in
agreement with the bound given in Theorem 2.
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N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

EN 1.641E-2 5.483E-3 1.781E-3 5.662E-4 1.758E-4 5.353E-5 1.604E-5

pN 1.581 1.622 1.653 1.688 1.715 1.739

Table 1: Defect–correction technique: Numerical results for problem (12)

§3. Defect correction technique for 2D problems

The aim of this section is to show that the ideas developed for the 1D case can be extended
to elliptic boundary value problems given by

Lεu≡ ε∆u+a·∇u−bu= f , (x,y) ∈Ω = (0,1)2, u = g on ∂Ω, (13)

where the coefficients of the differential equationa1,a2, b and f are sufficiently smooth and
they satisfya= (a1(x),a2(y))≥ (α1,α2) > (0,0), b(x,y)≥ 0, in Ω̄. Besides, we suppose that
sufficient compatibility conditions hold in order thatu∈C4,α(Ω̄) (space of Hölder continuous
functions whose derivatives up to fourth order exist and they are Hölder continuous). To
achieve this regularity, compatibility conditions up to second level are necessary (see [5]).

Using an appropriate change of variable and a classical analysis (see [7]), we can deduce
the following crude bounds for the exact solution and its partial derivatives in the maximum
norm

‖u(i, j)‖ ≤Cε
−(i+ j), 0≤ i + j ≤ 4.

Also, it is well-known (see [2]) that the exact solution of (13) has two regular boundary layers
near the sidesx = 0 andy = 0 of widthO(ε ln1/ε).

To approximate the solution of (13), again we consider a piecewise uniform meshΩ̄N =
{(xi ,y j)}Ni, j=0, which is the tensor product of the corresponding Shishkin mesh considered for
the 1D problem. Then, the mesh points are

xi =

{
ih, 0≤ i ≤ N/2,

xN/2 +(i−N/2)H, N/2 < i ≤ N,

y j =

{
jk, 0≤ j ≤ N/2,

yN/2 +( j−N/2)K, N/2 < j ≤ N,

whereh= 2σx/N, k = 2σy/N, H = 2(1−σx)/N, K = 2(1−σy)/N and the transition param-
eters are defined by

σx = min{1/2,(3/α1)ε lnN} , σy = min{1/2,(3/α2)ε lnN} .

We denote the local step sizes by

h j = x j −x j−1, k j = y j −y j−1, j = 1, . . . ,N,

h̄ j = (h j +h j+1)/2, k̄ j = (k j +k j+1)/2, j = 1, . . . ,N−1.
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On this mesh we define the following hybrid scheme
LNUi, j ≡ ε(δ 2

x +δ
2
y )Ui, j +a1(xi)DxUi, j +a2(y j)DyUi, j

−b(xi ,y j)Ui, j = f (xi ,y j) in ΩN,
Ui, j = g(xi ,y j) on ∂ΩN,

(14)

where

δ
2
x Ui, j ≡

1

h̄i
(D+

x Ui, j −D−x Ui, j), δ
2
y Ui, j ≡

1

k̄ j
(D+

y Ui, j −D−y Ui, j),

DxUi, j ≡

{
D+

x Ui, j , if ε ≤ ‖a1‖N−1,

D±x Ui, j , if ‖a1‖N−1 < ε or xi < σx,

DyUi, j ≡

{
D+

y Ui, j , if ε ≤ ‖a2‖N−1,

D±y Ui, j , if ‖a2‖N−1 < ε or y j < σy,

with

D±x Ui, j ≡
hi

hi +hi+1
D+

x Ui, j +
hi+1

hi +hi+1
D−x Ui, j ,

D±y Ui, j ≡
k j

k j +k j+1
D+

y Ui, j +
k j+1

k j +k j+1
D−y Ui, j ,

D+
x =

Ui+1, j −Ui, j

hi+1
, D−x =

Ui, j −Ui−1, j

hi
,

D+
y =

Ui, j+1−Ui, j

k j+1
, D−y =

Ui, j −Ui, j−1

k j
.

Similarly to [8], it is not difficult to prove that the error associated to the hybrid scheme (14)
satisfies‖u−U‖ ≤CN−1, proving first order of uniform convergence. To improve this order,
similarly to the 1D problems, we propose the following defect–correction scheme

Û = U +ϑ , if max{‖a1‖,‖a2‖}N−1≥ ε,

Û = U, otherwise.
(15)

where nowϑ is the solution of the discrete problem

LN
ϑ = f −LN

cdU in Ω, ϑ = 0 on ∂Ω, (16)

with

LN
cdUi, j ≡ ε(δ 2

x Ui, j +δ
2
y Ui, j)+a1(xi)D0

xUi, j +a2(y j)D0
yUi, j −b(xi ,y j)Ui, j ,

D0
xUi, j =

Ui+1, j −Ui−1, j

hi+1 +hi
, D0

yUi, j =
Ui, j+1−Ui, j−1

k j+1 +k j
.

To illustrate numerically the uniform convergence of this defect–correction method, we show
the numerical results obtained for two test problems, whose exact solution in both cases
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N=16 N=32 N=64 N=128 N=256

DN 0.310E-1 0.127E-1 0.485E-2 0.329E-2 0.228E-2

qN 1.288 1.388 0.561 0.528

Table 2: Defect–correction technique: Numerical results for problem (19)

is unknown. To estimate the pointwise errors of the solution{ÛN}, we use a variant of
the double mesh principle [1]; then, we calculate a new approximation{V̂2N} on the mesh
Ω̃2N = {(x̃i , ỹ j)} that uses the mesh points of the original Shishkin mesh and their midpoints,
i.e.,

x̃2i = xi , i = 0, . . . ,N, x̃2i+1 = (xi +xi+1)/2, i = 0, . . . ,N−1, (17)

ỹ2 j = y j , j = 0, . . . ,N, ỹ2 j+1 = (y j +y j+1)/2, j = 0, . . . ,N−1. (18)

In this way, we compare both numerical solutions at the mesh points of the coarse mesh, i.e.,
we calculateDε,N(xi ,y j) = |ÛN

i, j −V̂2N
2i,2 j |. For each fixed value ofε, the maximum errors and

the numerical orders of convergence are computed byDε,N = max
i, j

Dε,N(xi ,y j) and qε,N =

log(Dε,N/Dε,2N)/ log2 respectively. From these values we calculate theε-uniform errors
and theε-uniform orders of convergenceDN = maxε Dε,N andqN = log(DN/D2N)/ log2.

The first test problem is given by

ε∆u+(1+x)ux +(2+y)uy−u = (1−x)+(1−y) in Ω = (0,1)2, u = 1 on ∂Ω. (19)

The data of this problem do not satisfy sufficient compatibility conditions in order that the
exact solution has the required regularity (see [5]). Concretely, we only have compatibility
conditions of level zero, that is, the boundary conditions are continuous in the four corners
of the unit square. Table 2 displays the numerical results for the same range of values ofε as
before, giving in the first row theε–uniform errors and in the second one the corresponding
uniform orders of convergence. From this table we clearly see that we do not have a second
order rate of uniform convergence.

The second test problem is given by

ε∆u+(1+x)ux +(2+y)uy = (1−x)+(1−y) in Ω = (0,1)2, u = 0 on ∂Ω. (20)

Now, we again have compatibility conditions of level zero at three corners of the unit square,
and we can check that in the inflow corner (1,1) the first level of compatibility is satisfied.
Table 3 displays that the scheme (15) is almost second order uniformly convergent. Therefore,
we can conjecture that the defect correction technique improves the order of convergence of
the basic hybrid scheme when a sufficient level of compatibility holds.
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N=16 N=32 N=64 N=128 N=256

DN 0.225E-1 0.827E-2 0.283E-2 0.925E-3 0.298E-3

qN 1.445 1.547 1.612 1.633

Table 3: Defect–correction technique: Numerical results for problem (20)
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