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AN INVERSE SPECTRAL PROBLEM FOR A
SCHRODINGER OPERATOR WITH AN
UNBOUNDED POTENTIAL
AND A WEIGHT IN R?

Laure Cardoulis

Abstract. In this paper, we prove a uniqueness theorem for the pot&htiatl the weight
M of the following operatoil. = (m+ M) Y(—A+q+V)in R?. The potentialg is a
known increasing radial potential which satisfies }im , ., q(|x|) = +c0 and the potential
V is a bounded perturbation gfwith compact support. The weightis a known radial
bounded weight which is positive at infinity and the weiyhis a bounded perturbation
of mwith compact support.
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81. Introduction

In many papers, inverse problems for Schrodinger Operators are studied in the whole space
or in half space (see for example [5, 7, 11, 14]). But usually in these papers, the considered
potentials decrease towards infinity. There are also many papers on inverse spectral problems
for increasing potentials on the line or on the half-line (see [8, 9]). When the potentials are
bounded, the methods employed to get uniqueness results use the scattering operator, the
scattering amplitude or the Dirichlet to Neumann map.

Our aim here is to study an inverse problem in the whole space for a potential which tends
to infinity at infinity. Such unbounded potential occur in the quantum field theory (see [12,
XI1.3, XII.4, XIII.2] for the Hamiltonian of nonrelativistic quantum mechanics) and we recall
(see [12, p. 279]) that the spectral properties of Schrddinger operators are highly dependent
on the behaviour of the potential at infinity.

Therefore, because of the unboundedness of our operator, we use a spectral data method
developed in [10] for the anharmonic oscillator operatoiRfand extended in [4] for a
Schrddinger operator with a potential which tends to infinity at infinity but without any
weight. Note that usually, only small perturbations around a radially symmetric potential
are considered (see for example [2]).

In the present paper, we consider the following problem

(~A+q+V)u=A(m+M)uinR? (1)
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The variational space, denoted Wy(R?), is the completion of7 (R?), the set olC*® func-

tions with compact support, for the norjul|, = (fr2 |Oul? +qu?) Y2 \We recall that the
embedding o¥/y(R?) into L?(R?) is compact.

We denote by{|ul[ .y = (Jr2(Mm+ M)uz)l/2 for all u € L?(R?). According to the hy-
potheses om andM (see below (h2))|.|| .y iS @ norm inL?(R?) equivalent to the usual
norm. We denote byn+ M the operator of multiplication bgn4 M in L2(R?). The operator
(—=A+g+V)"Hm+M) : (L2(R2?), ||.||msm) — (L2(R?),]|.|Imsm) is positive self-adjoint and
compact. So its spectrum is discrete and consists of a positive sequepcgy > --- >
Un — 0 asn — +o. We denote byl; = 1/u; and by ¢, the corresponding eigenfunction
which satisfy(—A+q+V)¢1 = 21 (M-+M) ¢y in R? and|| ¢4/, = 1. (We recall thath; is
simple andp; > O (see [1, Th. 2.2]).) We denote lpy] =r and by f a primitive of f. We
consider the following technical hypotheses:

(h1) a(x) =q(|x); a(x) — +e as|x| — +w; e C?% ¢ > 0;V € L?; q(|x|) +V(x) > cst> 0;

(h2) m(x) = m(|x|); me CtNL®; M € L™ be such that there exists constamtsand my,
O<m <m(r)+M(r,0) <mforallr,8;

(h3) for all A > 0, there existsrg € R*, such that, for allr > rp, q(r) > 1 and

_Am(r)
A= am = °

i qm _ o
(h4) limy - 1w 20 = 0;

. 1/ m /2
(h5) there existy € [0,1] such that g/g)) =0 qu/z( 5 q3/§(r), 32((:)), éq“()r))l) and q%/z((r)) -

1 19 Im@)
O(I'qu/z(l') ) q3/2<r)a q2(r)’ CIO ) at |nf|n|ty

[ (1)

1 9@ 1 _
(h6) r2q1/2 0 R ) and Gy € L*([ro, +oo[);
(n7) g e SR € L2, 4

(h8) [0 (efzf(ql/ZJqufl/z)) =0 (efzf(ql/zf%anl/rz)) for r large enough;

(qt/2— Amq-1/2

(h9) g~ /el (@ ) & L2([ro, +eo);

(h10) there existe: > 1 andCy > 0 such that for alf > ro and for allg, |V (r,0)| < e fat/2.

(h11) there existy3 > 1 andC, > 0 such that for allr > ro and for all 6, |M(r,0)| <
CE e fq]-/2

Note that (h3) is a consequence of (h1)-(h2) (and permits to defjrend that (h2) ensures
that if the weightM has a compact support, then the radial weighs¢ positive outside the
support oM. Note also that (h10) (resp. (h11)) is satisfied if the poteNti@bsp. the weight
M) has a compact support. Finally, note that (h7) and (h8) can be replaced by
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(h12) e/ (@*-20) € 1 2([rg, 4oo]).

For exampleg(r) =r" (for r > 1) satisfies each of the precedent items if and orﬂy;iafg.

We follow here the same method than in [4] where we obtained a uniqueness result for
the potentiaV of the equation (1) and where we assumed thatM = 1. The interest of
the presence of the Weight is that now, on the contrary of [4], we can taljg) = er with

+1 (indeed (h5) is satisfied smc%T (W |) nd-L20 _

for examplem(r) = 7 20

= 2 L
O(%) at infinity). But, as in [4] and also as in [6] (for the asymptotic distribution of the
eigenvalues), we still do not takgr) = In(r) since—=—~

all p>1by

(n( 3/2 ¢ Ll([ro,+°°[) Denote now for

Crp(V:M) := lim 2q1/4r1/zef(ql/2’%anl/z)/ u(r,8)e"'P?deo, 2)
— 400 0

whereu is one solution of (1). Our aim is to prove the following theorem.

Theorem 1. We assume that the paifg,V) and(q,W) satisfy the hypothesis (h1), the pairs
(m,M) and (m, P) satisfy the hypothesis (h2), g and m satisfy the hypotheses (h3) to (h9), V
and W are bounded potentials with compact supports, M and P are bounded weights with
compact supports. Léip ) be the normalized eigenfunctions associated iV, M)),

and let(y), be the normalized eigenfunctions associated WiiliW, P)),. If, for all | € N,

| > 1, and, for all pe N,

A (VvM) =X (W? P) =4 and Cﬁ|,p(VaM> = CM,D(Wa P)7
then
=y (foralll) and M=P, V=W inQ={xeR? 3l >2 ¢(x) #0}.

We will follow a method used by T. Suzuki in a bounded domain [13]. This method has
been generalized by H. Isozaki [10] for the anharmonic operat@f ithen by L. Cardoulis,
M. Cristofol and P. Gaitan [4] for a Schrédinger operataRih This method is the following:
(i) first, we study the asymptotic behaviour of the solutions of a second order differential
equation which stems from equation (1); (ii) then we prove that, under hypotheses (h1)—(h11),
C,.p(V,M) is well defined as a constant; (iii) finally, we prove that all the eigenfunctions
associated wittiV, M) and(W, P) are the same, and therefore that the perturbations are equal
in Q.

§2. Asymptotic behaviour of a solution

Here we study the asymptotic behaviour of the solutions for the equation (1x| Put. We
use polar coordinates to defing

up(r) = r1/2/02” u(r,0)e 'Pde. (3)
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Using (1) and (3), we get:

2
() + (P () = Am(r) ) up(r) = fol0), @

2n . 2n .
fp(r):—rl/Z/ V(r,9)u(r,9)e"p9d6+/lr1/2/ M(r,0)u(r,0)e P°de.  (5)
0 0

We are now able to prove the following theorem.

Theorem 2. Let g, V and m be potentials and weight defined as before, satisfying (h1) to
(h9), a andA two positive reals. Then the equation

a
—u'(r)+ (Zz +a(r) —Am(r)u(r) =0 (6)
has a system of fundamental solutidys, y,} with the asymptotic behaviours:

~ Lo vag - Apaye) ~1/4

2
Furthermore, the Wronskiany, —y;y» = 1.

V1 Yo ~( ef‘(ql/Z—}"qufl/Z)7 asr— +oo, (7)

Proof. Step I We sety = (;); using (2.4) we get:

y = (3’//> = <q(r)/1?n(r)+ra2 c1)> (3/) = <q(r)l?n(r)+ra2 01> y. 8

We denote

a 1 -1 -
=k = fan-amn+ 5. p= (i ). v=ry ©
If we combine the two relations (8) and (9), we obtain:
o 1k k ,
Y =PywithP =P 2 k) P, (10)

whereP’ is the derivative of the matrix P with respect to the variabléThen, we make a
Taylor development for each entry of the matifix Using the hypotheses (h4) and (h5), we
can write (10) under the following form:

qt/? - M?z _% _%
1 ~ ~
V = qu/ a 1/2 Am q y-+ Rya
T T4 gz T4

—

910 o IO,

o 1 1 4o |
with R:= R(rqu/Z( rn’ q3/2(r) q (r > (a(
\
(9

1
formo(qul/% 5 e

Q
=
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Step 2 Considery = (I - ;4P )zwith P = (), 47 ). We get:

- 1 1 d(r) [m(n)
Z'—A(Q)Z+R(r2q1/2(r)’q3/2(r) 2(r)’ (a(r))” )

ql/2 1n/12 f]ﬁ
A(Q) = 8 _qt/2 4 2m _d
4q
WV

with

2q1/2
Step 3 Now we introduce the new variabledefined byz = E(q)v, with

(g2 — Am
e (T 0 (%2
0 %q_meff(ql/zfzgﬁ) 0 E)

The matrixE(q) satifiesE(q)’ = A(q)E(q) and we have/ = E(q) *R(q)E(q)v = (ﬁ;) V.

Moreover, using (h6), we deduce that there exists ro andC €]0, 1] such that, for all
: o o w o rrf

r > ry, the integralg; ql/zil(t)tzdt, e dt, [+ q dt and ;" | | |

above byC.

Step 4 We define now the map and the set# as follows:T : v = (v1,v2) — W = (W, W>)

wherews (r) = [ Kyv(t)dt andwa(r) = & + f,rl Kaov(t) dt (¢ will be specified later), and#

is the set ofv = (v1,v2) such that

7 dt are bounded

qs/z

sup|va(X)| < +oo.
r>rq

o[ (ql/2— Am_
Vi=12 vi:[r,») =R, V1:O(e I qu/z))7

Note that(.#,||.||,,) is @ Banach space withv||,, = max(||vi],,||V2|l)- Using (h6)—(h8),
we can prove that the map: .# — .# is a contraction, and so there exists a unigun

% such thafTv=v. For thisvin %, we come back up ta then toy, after that toy and
finally to u one solution of the equation (6). We obtain that E;v; — Eovo. Sincev € .7,
%vl = 0(1) and we choosé such thatv; has a limit which is not equal to 0 astends to
infinity. Therefore we deduce th&b is an asymptotic behaviour for one solution of (6) and
by a standard transformation we get also tBatis another asymptotic behaviour for one
solution of (6). O

Now we prove that the constant defined by (2) exists.

Lemma 3. Let u be in 2(R?) such that(—A+q+V)u= A(m-+M)u for A a positive real
and g, V, m, M potentials and weights which satisfy the hypotheses (h1) to (h11). Then, each
C,. p(V,M) (defined by(2)) exists and is a constant.

Proof. Letu be one solution of the equation (1). Recall thatefined by (3) is one solution
of the equation (4) and thd, is defined by (5). Ley, andy» be a fundamental system of
solutions for (6) whose asymptotics behaviours are given by (7). Then thereaxastdcy,
constants, such that

Up(r) = Cay1(r) + Coyo(r) — yo(r /Y1 (t)dt+ya(r /YZ (t)dt.
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Using (h10) and (h11) we get thytf, € LY([ro, +oo]) fori = 1,2. So we can write

up(r) = (c1+ +wy2(t)f dt yl / yal(t dt yl( )

+ (e | +°°y1<t>fp<t>on)yz<r> ([ oo )y,
Since [, () p(t)dt = 0(1), we get( [ ya(t) fp(t)dt)ya(r) € L2([ro,+[). We obtain
also that( 1(t) fp(t)dt) yo(r) € L2([ro, +-o0[). Moreovery, ¢ L%([rg, +[), so we get that
cz_fro yi(t ) ( )dt. Therefore we can prove tha; ,(V,M) :c1+fr§°°y2(t)fp(t)dt. O

§3. Proof of Theorem 1
We assume that suppcC B := {X; |x| < R} = B(0,R), suppV C B(0,R), supgM C B(0,R),
suppP C B(0,R), with R> rg. We are going to prove thag (x) = y;(x), for all x and all
IStZepl) 1 We prove in this step that for dll ¢ (X) = i (x), if x| > R. We have
(-A+q)gr =Amg  and (—A+Qq)y = Amy in R?\B.

We decompose, andy relative to the trigonometric functions bagis k1, , and we want
to prove that all the coefficients are equal. Let

i

. (2w ) - 21 )
bip(r)=rz [ @(r,0)e'P’de and b y(r)=rz / vi(r,0)e P do.
JO ' JO
If r > Rthen (see (3) and (4)) the functidy, is solution of

p_,

b0+ (*—

This equation has the following fundamental system of solutions (see Theorem 2)

(1)~ im(r) ) byp(r) = O.

1-1/4 of (—a¥/2+ H0g1/2

brp(r) = Caya(r) +Caya(r) with  § V1™ 2 / e[(l/z - fl/z >7 asr — o,

Yo ~ q*l/“ef(q Tz ), asr — +oo.
Sinceby p € L2, y1 € L2, andy, ¢ L2, we deduce tha€, = 0, so we get thab ,(r) =
Ciya(r). By the same way, we obtain tHatp( ) = Cyya(r). Moreover, due to the hypothesis
Cy.p(V,M) =Cy, n(W,P), we obtainCy = Cy. Thereforely p(r) = by p(r) for all | and for all
r >R So, foralll, ¢(r) =y (r)ifr >R
Step 2 We prove here thapl( ) = y1(X) if [X| < R We consider

Kxy) =S op({wp(y) — op(y)} (11)

p=1
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and we haveK (x,y) = 3 p>1 Vp(Y){@p(X) — wp(X)}. Letx be such thafx| < R. By the first
step, ifly] > R, (11) ensures tha€(x,y) = 0. If we denote by, = — Ay +q(|y]) +V(y), for
y € R?, thenVy K(x,y) = 0if |y| > R. We put for allt > 0

R(xY) = Zle*“" Yo({@p(X) — ¥p(¥)}. (12)

p=
Sincee e = 3 }: (—=2p)", we obtain

+00 tn n

R(xy) = p; 2 A e {9p00 = v},
and then
T n N + N n
R(Xy) = n;) o p;(—lp) Vp(Y{Pp(X) — yp(X)} = nZo E(—Vy) K(X,y)-

SoR(x,y) =0if |y| > R. Now, multiplyingR (x,y) by g1, we obtain, forly| > R,
M R(xY) = 0= yr(Y){e(X) — ya(x)} + zze’“"”“) VoW {ep(¥) — wp(x)}.  (13)

p=

Multiplying by a test function, we can prove that the limit,tasnds to infinity, of the second
term of the previous sum in (13) is equal to zero. Then (13) implies yh&){1(x) —
y1(x)} =0 for |x| < Rand|y| > R. So, sinceys has no zero, we haug; (x) — y1(x) = 0 for
IX| < R. Thus,@1(x) = w1 (x) for x € R?,

Step 3 Recall thai € R? be such thajix| < R. Since¢; = v, the functionR, defined by (12)
becomes: for alt > 0, R(X,y) = zpzze—"lpwp(y)(q)p(x) — Yp(X)). We can choosg such
that|y| > Rand y»(y) # 0 (sincey, has non compact support). Multiplyirig by €%2, we
obtain also

0= y2(Y){@2(X) — y2(X)} + 238‘“')‘@ VoY) {@p(X) — wp(X)}.
p>

As in the second step, we can prove that the limit, as+o, of the second term is equal to
0, so we get thaby(x) = y»(x) for |x| < R. Therefore, for alk € R?, ¢o(x) = w2(x). Step by
step, we obtain that, for all> 1, and for allx € R?, ¢ (x) = y;(x). Therefore we get: for all

I >1,

(—A+a+V)g =4 (M+M)¢ and (—A+g+W)¢ = A4 (m+P)g in R%

So, foralll > 1, (V—-W)¢ = A4 (M —P)¢. Since¢, > 0, we have/ —W = 13(M — P) and

so, foralll > 2, 21(M —P)¢y = 4 (M —P)¢,. SinceA; < A for all | > 2, we obtain: for all

| >2,(M—P)¢ =0. ThereforeM =Pin Q = {xc R2, 3l >2, ¢ (x) # 0} and soV =W

in Q.

RemarkL. The sefR?\ Q = {xc R?, vl > 2, ¢ (x) = 0} does not contain any bounded open
subset. Indeed, using a unique continuation theorem (see [3], [12, Th. XII1.63, p. 240]) for the
operator—A+q+V in any ballB (note thatj (—A+q-+V)¢ |* = |4 (m+M)g, % < cst|gy 2

in B), sinceg, is an eigenfunctiong, cannot vanish irB.
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