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THE GENDARME ALGORITHM FOR ADAPTIVE

MESH REFINEMENT

Roland Becker

Abstract. We present an adaptive two-level finite element method. The main idea of
the algorithm is to guide the local mesh refinement of the coarser mesh by a finer mesh
called gendarme mesh. Two different estimators are involved in the algorithm: a standard
a posteriori error estimator of residual type is used to control the error in the gendarme
mesh; a simpler estimator based on the difference of the solutions corresponding to the
two meshes is employed to guide the local mesh refinement.
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§1. Introduction

The analysis of adaptive finite element methods has made important progress in recent years.
Based on classical residual-based a posteriori error estimators [1, 5, 8] it has been shown
by Dörfler [4] and Morin, Nochetto, and Siebert [6] that an adaptive mesh refinement al-
gorithm converges towards the solution of the model problem. The model problem is the
homogenuous Poisson equation in a two-dimensional bounded domainΩ with piecewise lin-
ear boundary∂Ω:

−∆u = f in Ω, u = 0 on ∂Ω. (1)

In [6] the importance of controlling oscillations in data not captured on a given finite element
mesh is pointed out. In addition, the role of inner nodes - the existence of which is ensured
by the newest vertex bisection algorithm - is accounted for.

An important further result is the estimation of the dimension of the adaptively con-
structed discrete spaces, first achieved for wavelet discretizations by Cohen, Dahmen, and
DeVore [3]. This result is extended to a modified version of the algorithm of [6], including
an additional coarsening step, by Binev, Dahmen, and DeVore in [2]. A further significant
improvement has been achieved by Stevenson [7] who shows that the additional coarsening
step is not necessary in order to prove optimal complexity.

The importance of the last-mentioned results lays in the fact that they show optimal com-
plexity of certain adaptive algorithms: if the solution of (1) can be approximated by a given
adaptive method at a certain rate (quotient of accuracy to number of unknowns), the itera-
tively constructed sequence of meshes will realize this rate up to a constant factor.

The purpose of this contribution is to define an algorithm based on successive solution
of the problem on two nested spaces; such type of algorithms are widely used for numerical
integration and solution of differential equations.
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A simple criterion based on the difference of these solutions is used for local mesh re-
finement of the coarse mesh. We call this algorithmGendarme algorithm. The techniques
used here are based on the work reported on in the above mentioned articles, where lowest-
order conforming finite elements on triangular meshes based on newest-vertex-bisection are
considered.

1.1. Notation

LetV ⊂H1
0(Ω) denote a finite element space. We define the Ritz-projectionuV = RVu by the

variational equation: finduV ∈V such that∫
Ω

∇uV ·∇vdx=
∫

Ω
∇u·∇vdx ∀v∈V. (2)

Then the finite element approximation to the solution of (1) in spaceV is simply given by
RVu. In order to simplify notations we will generally suppress the traditional subscripth
in the notation of finite element spaces (V = Vh), and writeuV instead ofuh for the Ritz
projection.

We use the following notation for theH1(Ω)-semi-norm:

‖∇u‖ :=
(∫

Ω
|∇u|2dx

)1/2

, (3)

and consider it as the norm onH1
0(Ω). The dual space ofH1

0(Ω) is H−1(Ω) and we recall
that for f ∈ H−1(Ω)

‖ f‖−1 = sup
v∈V\{0}

( f ,v)
‖∇v‖

denotes the dual norm.

§2. Motivation

In this section we give a motivation for our investigation, postponing precise definitions to
the following sections. Suppose we are given two nested finite element spaces obtained by
global refinement (which means that each cell in the underlying mesh has been refined)

V̂k ⊂Vk.

To start with we consider the following optimization problem: Find a spaceV̂k+1 in between
the given spaces,

V̂k ⊂ V̂k+1⊂Vk, (4)

such that we are able to guarantee a certain error reduction with optimal complexity. To be
more precise we define for givenθ , 0< θ < 1, the set of spaces

Vk :=
{

V̂k ⊂V ⊂Vk :
∥∥∇uV −uVk

∥∥2≤ θ

∥∥∥∇uV̂k
−uVk

∥∥∥2
}

, (5)
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and choosêVk+1 ∈ Vk as a solution to the optimization problem

inf
V∈Vk

dim(V). (6)

This is a finite-dimensional optimization problem which is for the following reasons unprac-
tical to solve. The first difficulty associated with (6) is the evaluation of the error, which
requires repeated solution of the Poisson equation. It turns out that a similar problem can be
solved efficiently, provided we replace in the definition ofVk (5) the reduction of the error by
the reduction of an hierarchical error estimatorµ. The second difficulty is that solving (6) is
not an advisable strategy, if the dominant error is not captured inVk. In order to check if this
is the case we use a standard residual error estimatorη which is supposed to yield an upper
bound of the error, ∥∥∇u−uVk

∥∥2≤ η(uVk), (7)

and a lower bound in the following sense: if the spaceV contains the space obtained fromVk

by global refinement, we have

η(uVk)≤Cη

∥∥∇uV +uVk

∥∥2−osc(Vk), (8)

where osc(Vk) is a oscillation term similar to the one in [6]. We propose to check if for a fixed
α > 0 the following inequality is satisfied:∥∥∥∇uV̂k

−uVk

∥∥∥2
≥ α η(uV̂k

). (9)

If (9) holds we consider the afore mentioned optimization problem, otherwise it turns out to
be appropriate to refine the data oscillations.

This leads as to the following algorithm which we termgendarme algorithm:

(0) Choose parametersα,θ ,σ . Let V̂0 be a finite element space and setk = 0.

(1) Perform a global refinement to obtainVk and compute the corresponding solutions
ûk := uV̂k

anduk := uVk.

(2) If ‖∇uk− ûk‖2≥ α η(ûk) define

Vk =
{

V̂k ⊂V ⊂Vk : µ(V,Vk)≤ θ µ(V̂k,Vk)
}

, (10)

otherwise define
Vk =

{
V̂k ⊂V : osc(V)≤ σ osc(V̂k)

}
. (11)

(3) DefineV̂k+1 as a solution to the optimization problem inf
V∈Vk

dim(V) and go to (1).

The objective of this article is to analyze the above algorithm in case of conforming finite
element spaces on quadrilateral meshes with local refinement based on isotropic division of
cells allowing hanging nodes. A simple rule to avoid multiple layers of hanging nodes is
given below.

In order to elaborate the structure of the algorithm, we first formulate the gendarme algo-
rithm in an abstract setting. The results are then applied to the concrete situation described
above.
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§3. The gendarme algorithm

We consider the following ingredients:

i) A starting meshT0 which defines a treeτ(T0) containing all possible locally refined
meshes.

ii) The set of alladmissiblemeshesT obtained from the tree. ForT ∈ T we write
N(T) = #T.

iii) A global refinement algorithmRglob(T) ∈T .

iv) A local refinement algorithmRloc(T,K ) ∈ T taking as additional argument a subset
K ⊂ T of cells to be refined (’marked cells’).

v) An error functionφ(T ′,T), error estimatorsη(T), osc(T) andµ(T ′,T), the last taking
as additional argumentT ′ ⊂ T. All error functionals are supposed to have positive
values.

We define the set of meshes having at mostN ∈ N elements:

TN := {T ∈T : N(T)≤ N} ,

and the error associated toT by

φ(T) := sup
T ′⊃T

φ(T,T ′).

We make the following assumptions: there exist constantsCφ , cφ , Cosc, cµ , andCµ such that

(H1) φ(T1,T3) = φ(T1,T2)+φ(T2,T3) for all T1⊂ T2⊂ T3.

(H2) φ(T1,T1∪T2) = φ(T1∩T2,T2) for all T1,T2 ∈T .

(H3) φ(T)≤ η(T) for all T ∈T .

(H4) η(T)≤Cη(φ(T,T ′)+osc(T)) if T ′ ⊃Rglob(T).

(H5) osc(T)≤Coscφ(T) for all T ∈T .

(H6) cµ φ(T ′,Rglob(T))≤ µ(T ′,Rglob(T))≤Cµ φ(T ′,Rglob(T)) for all T ⊂T ′⊂Rglob(T).

In addition, we make the assumption that the error can be decreased at a certain rates> 0:

sup
N∈N

N−s inf
T∈TN

φ(T) < +∞. (H7)

Before proceeding any further, we make some simple conclusions of our assumptions. First
we note that (H1) and the definition ofφ(T) imply that

T1⊂ T2 =⇒ φ(T1)≤ φ(T2). (12)

Similarly, we find that

T1⊂ T2 =⇒ φ(T1) = φ(T2)+φ(T1,T2). (13)

The gendarme algorithm reads:



The gendarme algorithm for adaptive mesh refinement 347

(0) Choose parametersα,θ ,σ . SetT̂1 := T0 ∈T and setk = 1.

(1) SetTk := Rglob(T̂k).

(2) If φ(Tk, T̂k)≥ α η(T̂k) define

Tk =
{

T ∈T : T̂k ⊂ T ⊂ Tk andµ(T,Tk)≤ θ µ(T̂k,Tk)
}

, (14)

otherwise define

Tk =
{

T ∈T : T̂k ⊂ T : osc(T)≤ σ osc(T̂k)
}

. (15)

(3) DefineT̂k+1 as a solution to the optimization problem inf
T∈Tk

N(T) and go to (1).

Our convergence result for this algorithm is expressed in the following theorem.

Theorem 1. Suppose that (H1)-(H7) are fulfilled. Let the constantsα,θ ,σ be chosen such
that

0 < α < 1/(2Cη), θ < cµ/(2Cµ), σ < 1/(4CηCosc). (16)

Then, the sequence of meshes(Tk)k generated by the gendarme algorithm has the following
properties. There exist constants C andρ < 1 such that

φ(Tk+1)≤Cρ
k, k = 1,2, . . . . (17)

In addition there exists another constant C such that for anyε > 0 we have the following
implication:

φ(Tk)≤ ε =⇒ N(Tk)≤Cε
−1/s. (18)

A proof of this theorem will be presented elsewhere.
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