Monografias del Seminario Matematico Garcia de Gald&8n61-58 (2006)

SEQUENCES OF CONTRACTIONS AND
CONVERGENCE OF FIXED POINTS

Luc Barbet and Khadra Nachi

Abstract. Stability of fixed points of contraction mappings has been studied by Bonsall
(cf. [2]) and Nadler (cf. [4]). These authors consider a sequéfgeof maps defined on

a metric spacéX,d) into itself and study the convergence of the sequence of fixed points
for uniform or pointwise convergence (fy,), under contraction assumptions of the maps.

We will first considerk-contractionsT;, which are only defined on a subséf of the
metric space. We note that, in general, we cannot apply their results by using an extension
theorem of contractions (cf. [1]). In this general setting, pointwise convergence cannot
be defined (except when afl, are a same subset). We then introduce a new notion of
convergence and we obtain a convergence result for the fixed points which generalizes
Bonsall's theorem.

Secondly, after introducing another notion of convergence which generalizes uniform
convergence, we obtain a stability result when only the limit map is a contraction. Some
other results of stability of fixed points, which generalize Nadler's theorems, can be found
in [3].
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AMS classification54H25, 54E40.

81. Introduction

We are interested in the convergence of a sequence of fixed points corresponding to a given
sequence of contraction mappin@g : Xn — X)neny Which converges (in some senses to
be defined) to a contraction mappifig : X» — X, where allX, (n € N := NU {»}) are
nonempty subsets of a metric spdeed). Recall that, given a constakte (0,1), a map
T:Y Cc X — X is ak-contraction mapping ifi(Tx Ty) < kd(x,y) for all x,y €Y. The
existence of the fixed points will be an assumption; for instance, the contraction mapping
principle of Banach guarantees the existence of a unique fixed point of each contraction
mapping of a complete metric space into itself. Thus we are only interested in stability
properties.

Many results have been given when each mMais defined on the whole metric spaxe
It was proved by Bonsall that pointwise convergence of a sequerkeeaftraction mappings
(T : X = X)nen to ak-contraction mappin@. : X — X implies convergence of the sequence
of fixed points associated @,)ne to the fixed point ofT,, whereX is supposed to be a
complete metric space (cf. [2]). Nadler proved a similar result under uniform convergence
on the domairX of a sequence of mappings to a contraction mapping (cf. [4]).

Our main purpose is to generalize these two classical results when considering a sequence
of contraction mapping§T, : X, — X)nen Which converges to a contraction mappifg:
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X — X. Since the domainX, C X are assumed to be different, pointwise and uniform
convergence cannot be defined. It will be necessary to introduce and study two new notions
of convergence for this type of problem.

We note that another important stability result can be obtained for a sequence of con-
traction mappings but without a uniform Lipschitz constant as considered by Bonsall. When
the metric spac&X is locally compact and each, is ak,-contraction mapping fronX into
itself (vn € N), convergence of the fixed points is a consequence of pointwise convergence of
the contraction mappings (cf. [4]). A generalization of this theorem of Nadler can be found
in [3].

§2. Stability and generalization of pointwise convergence

Let us introduce a first notion of convergence as follows (wires the symbol of graph):
(G) Gr(Tw) CliminfGr(Ty) :
VX S )(oo, E(Xn)neN S rlneNXn: Xn — X andTan — TooX.

We will say thatT. is a(G)-limit of the sequencéTy) ey When property(G) is satisfied by
the family (Tn),\orv-

We can remark that &G)-limit map of a sequencéT,)nen IS NOt necessarily unique.
ConsideiX, := R (n€ N) and the family(T,: R — R), iy of mappings defined bjx:= %(
for x € R andTex := 1 for x € R*, T,,0 := 0. It is clear thafl. is a (G)-limit of (T,). Let
T. : R — R be defined byl x := ToX if X # 0 andT,0 := % ThenT,, is also a(G)-limit of
(Tn); indeed, the poirk = 0 is the limit of the sequend@n)nen- = (£ )nen+ such thalToxn)
converges td.0.

We now give a sufficient condition for uniqueness of (@-limit map.

Proposition 1. Let(X,d) be a metric spaceXn),.r a family of nonempty subsets of X and
(Th : Xn — X)nen @ sequence of k-Lipschitz mappings. Jf: ., — X is a(G)-limit of (Ty)
then T, is the unique one (defined o, X

Proof. Assume thaf, : X — X andT,, : X., — X are(G)-limit maps of the sequenddy,).
For any poinix € X, there exist two sequencés,) and(yn) in MyX, converging tax such
that (Tx,) converges td..x and(Tny,) converges td,,x. From the Lipschitz condition, the
sequencéd(Tyxn, Tnyn)) converges to 0 and since for allve have

d(TeoX, TuX) < d(TeoX, TnXn) + d(TnXn, TaYn) + d(Tayn, TeX)
we deduce thaf.x = T.X. O
The following statement is our first stability result.

Theorem 2. Let (X,d) be a metric space(Xy), . a family of nonempty subsets of X and
(Th = Xn — X)o7 @ family of mappings satisfying propert) and such that, for all re N,

Tn is a k-contraction from(X,,d) into (X,d). If, for all n € N, x, is a fixed point of Tthen
the sequenceéx,)nen converges toX.
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Proof. Let x, be a fixed point off, for eachn € N. Since propertyfG) holds andk., € X,
there exists a sequenf® )nen Such thay, € X, (Vn € N), Y — Xeo aNdTayn — TeoXe. ThUs,
by the contraction condition we get:

d(Xn; %) < d(TnXn, TaYn) +d(TnYn, TeoXoo )
< kd(Xn,Yn) +d(Tayn, TeoXw)
< kd(Xn, Xeo) + KA(Xeo, Yn) + A (TiYn, TooXeo)
We conclude thatxn)neny CONverges t., from the following error estimate:
d(Xn, Xeo) < (1= K) 7 (kd(Xeo, Yn) + d(T¥, TooXeo)). O
When all the subsets, are equal to the spade we obtain, as a consequence, the theorem
of Bonsall (cf. [2]):

Corollary 3. Let X be a nonempty complete metric space anfletX — X), i be a family
of contraction mappings with the same Lipschitz constantlkand such that the sequence
(Th)nen converges pointwise ta,T Then, for all ne N, T, has a unique fixed point,and

the sequencéx,)nen CONverges toX.

Let us point out some properties. The first one says thag@)dimit map Te : X — X
is ak-contraction as soon as each nigap X, — X is ak-contraction. More generally:

Proposition 4. Let (X,d) be a metric spaceX),,.y a family of nonempty subsets of X and
(Th = Xn — X) oy @ family of mappings satisfying propert§) and such that, for any a N,

T is ky-Lipschitz with(k,)neny @ bounded (resp. convergent) sequence. Theas R-Lipschitz
with K:= sup,cy kn (resp. k= Ilimk).

Proof. Given two pointsx andy in X, by (G) there exist two sequencés,) € MyX, and
(yn) € MpX, converging respectively te andy and such that the sequend@sxn), (Thyn)
converge respectively fi.x andT.y. For anyn € N, we deduce from the Lipschitz condition
that

d(TeoX, Teoy) (TeoX, TaXn) +d(TnXn, Tayn) + d(Tnyn, Tey)
(TeoX, TnXn) 4 Knd (Xn, Yn) + d(Tnyn, Twy).

Since limsugk,d(xn, ¥n) < kd(x,y), we conclude that(TeX, Tey) < kd(X,Y). O

<d
<d

When all the subsets, (n € N) are equal to a nonempty subsétof X, we can compare
the notion of(G)-convergence with the pointwise convergence for a sequence of (fiaps
M — X) to a mapT. : M — X. We will prove that propertfG) is more general than the
pointwise convergence but these two notions are equivalent when the seqUigneg is
equicontinuous oM.

It is clear that pointwise convergence implies propé@y. The converse is false. Con-
sider the family(T, : Ry — R),  defined by:Tox := % andTwx:= 1 forallxe R,. The
mapT. is a(G)-limit of (T,) but pointwise convergence is not satisfied. The problem arises
at the pointx := 0; we can take the sequene) := (1/1/N)nen+ to verify that property(G)
is satisfied at this point.

In the next result, a sufficient condition is given in order that the two notions of conver-
gence become equivalent.
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Proposition 5. Let M be a nonempty subset of a metric spag), (Th: M — X), .y a fam-
ily of mappings satisfying propertys) and such that the sequenCh ) is equicontinuous
on M. Then the sequen¢®&, ),y COnverges pointwise ta.T

Proof. Assume that the sequen€k ),y is equicontinuous oW and converges t@. in the
sense of(G). Givenx € M, there exists a sequen(®)ney C M such that the sequences
(xn) et (Taxn) converge respectively t® and T.x. Since(T,) is equicontinuous we have
d(TaXn, ThX) — 0 and thusd(Tyx, TeX) — 0. We conclude that the sequen@a) converges
pointwise toTc. O

The existence of a fixed point for(&)-limit mapping is characterized by the following
result when it is a contraction.

Corollary 6. Let(X,d) be a metric spaceXn),. @ family of nonempty subsets of X and
(Th : Xn = X) oy @ family of mappings satisfying propert§) and such that, for any & N,

Tn is a k-contraction fron{X,,d) into (X,d). Assume that, for any@ N, x, is a fixed point
of T,. Then:

Te admits a fixed poink=- (xn) converges andim x, € X
< (xn) admits a subsequence converging to a pointaf X

Proof. From Theorem 2, we only have to prove the sufficient condition. Consider a subse-
quence(Xsn)) of (Xn) such that linkyp) = X. € Xo. By (G), there exists a sequengg) in
X such that, € X, Yn — %o andTpyn — TwXe. Since, for anyn € N, we have

d(Xoo, TeoXeo) < A(Xoo, Xs() ) + A(Tsn) Xsn) s Tsn) Ysn) ) + A (T Ysny » TeoXeo)
< d(Xeo, X5(n) ) + KA(Xsn)» Ysiny) + A (Ts(n) Ys(n) > TeoXeo)
we deduce that, = TeXew. O
Remarkl. Under the assumptions of Corollary 6, and if:
(i) liminf X, C X (i.e., the limit of any convergeritz,) € MpenXn is in X,) then:

T admits a fixed point=> (xn) converges.

(i) limsupX, C X (i.e., any cluster point of anfz,) € MpenX; is in X,) then:

Te admits a fixed point—=>- (x,) admits a convergent subsequence.

Under a compactness assumption, the existence of a fixed point @ tHenit map can
be obtained from the existence of fixed points of the contraction mapjjngs

Theorem 7. Let (Xy),.y be a family of nonempty subsets of a metric spacel) and (Tp
Xn — X))o @ family of mappings satisfying propert$) and such that, for any g N, T,

is a k-contraction. Assume thhn supX, C X, and Uan is relatively compact. If, for any
ne

ne N, T, admits a fixed pointxthen the(G)-limit map T admits a fixed pointxand the
sequenceéX,)nen converges toX.
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Proof. Let x, be the fixed point off, for n € N. From compactness condition, there exists a
convergent subsequengey,)). From the above remarR;, admits a fixed poink. and by
Theorem 2 the sequenée,) converges t0. O

Let us remark that a variant of Theorem 7 can be proved under the following assumptions:
limsupTn(Xn) C X» and UNTn(Xn) is relatively compact.
ne

Let us introduce another notion of convergence which is weaker(tBgeonvergence as
follows:

(G7) Gr(Te) C limsupGr(Ty) :
VX € Xeo, I(Xn)nen € MnenXn, ISE S Xgm) — X andTgn) Xsrm) — TwX,

whereS denotes the set of all increasing mapsN — N.

Convergence of the sequence of fixed points to a fixed point (@ 3-limit map T
does not necessarily hold. Consider the faniily: R — R), . given by Tox := (—1)" and
TwXx:= 1. Itis clear that the sequen€h,) converges td.. in the sense ofG™). The sequence
of fixed points corresponding {@,) is the divergent sequen¢e—1)").

The map defined by, x:= —1 for x < 0 andT,x:= 1 forx > 0 proves that 4G~ )-limit is
not necessarily unique and the Lipschitz property is not preserved in generd3thidimit
is discontinuous).

We shall establish in the next result that a fixed point @&a)-limit map is then a cluster
point of the sequence of fixed points associated Wit).

Theorem 8. Let (Xn),,.y be a family of subsets in a metric spdegd) and (T : Xy — X), o5
a family of k-contraction mappings satisfying propef@ ). If, for any nc€ N, x, is a fixed
point of Ty then x, is a cluster point of the sequentg)nen.

Proof. By property (G™), there exists a sequen¢g,) € MpX, which has a subsequence
(Ys(m)) such thatyg) — %e andTgp)Ysm) — TwXo. Since each mapyy is ak-contraction,
we have:

d(Xs(n)» Xeo) < d(Ts(n)Xsny» Ts(n)Ys(n)) + A (Tsm) Vs TeoXeo)
< kd(Xs(n)» Ys(n)) + d(Ts(n)Ys() » TeoXen)
< (1=K H(kd (%o, Yny) + ATy Ys(ry)» TeoXeo))-
Thus (X)) converges to, the fixed point ofTe. O

83. Stability and generalization of uniform convergence

When the constants of contraction are not uniform, it was remarked by Nadler that point-
wise convergence dfT, : X — X) is not a sufficient condition to get a stability result as in
Bonsall's theorem. First, Nadler proved that, under a uniform convergence assumption of
(Th : X = X)nen to a contractionT,, : X — X, any sequence of fixed points corresponding

to (T,) converges to the fixed point of the limit map. Let us note that later on, this author
obtained a stability result assuming that the metric spaéelocally compact and that the
sequence of contractiori3, : X — X)ney cOnverges pointwise to a contractidn : X — X.
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In this paper, we are interested in giving a generalization of the first result of Nadler (cf.
[4, Theorem 1]); some generalizations of the second one are obtained in [3].
Let us introduce a second convergence property as follows:

(H)  Y(Xn)nen € MnenXn, 3(Yn)nen C Xoo : d(Xn,Yn) — 0 andd(TnXn, TeoYn) — O.

We will say thatT., is a (H)-limit of (T)nen When property(H) is satisfied by the family
(Tn)neN'

The following proposition discloses a relationship between the two notions of conver-
gence(G) and(H).

Proposition 9. Let (X,) ..y be a family of nonempty subsets of a metric sp@atel) such
that X, C liminf X,. Let(Tq : Xy — X), i be a family of mappings such that i continuous
0N X.. If T is @ (H)-limit of (Ty)nen then T is a (G)-limit of (Tn)nen-

Proof. Letx € Xw; by the inclusionX, C liminf X, there exists a sequenfg,) in X such that
Xn € Xn andx, — x. By property(H) we can find a sequen¢g,) in X., satisfyingd (X, yn) —
0 andd(TnXn, TeYn) — 0. Thusy, — x and (by continuity ofT.,) we getTeoyn — Tox. We
conclude thal,x, — Tx and then propertyG) holds. O

It is easy to see that @)-limit is not necessarily &H )-limit of the sequence: consider
the family of mappinggT, : Ry — R), defined byTyx := an and ToXx := 1 for any
x € R,. We know thafl, is a(G)-limit of (T,). But property(H) is not satisfied: for the null
sequencéx,) we get|T,0— T.yn| = 1 for any sequencgy,) converging to 0.

When all the subsets are equal to the whole space, we obtain the following comparison
with uniform convergence.

Proposition 10. Let (T, : M — X)
of a metric spacéX,d).

neis b€ a family of mappings where M is a nonempty subset

(@) If (Th)new converges uniformly to.Ton M then T, is a (H)-limit of (Tn)nen.
(b) The converse holds wheg & uniformly continuous on M.

Proof. Property (a) is obvious. To prove the second one we assume that the limit map is
uniformly continuous ot and that the convergence @) to T, is not uniform. Thus, there
exists a sequendgy) in M such thatd(Tx,, TxXn)) does not converge to 0. If properti )

holds we can find a sequen@g) in M satisfyingd(xn, yn) — 0 andd(TnXn, Toyn) — 0. By
uniform continuity of the limit mafie, we getd(TewYn, ToXn) — 0 and therd(TyXn, TwXn) — O

which leads to a contradiction. This completes the proof. O

To show that the converse is not true in the general case, we can consider the space
X := (0, 40) and the sequenc@, : X — X)nen+ defined byTnx:= % . Then(Ty) converges
in the sense ofH) to T, : X — X defined byT.Xx:= % (Vx> 0). Indeed, for any sequente,)
in X and for the sequendgn) := (Xn+ £ )nen+ We havelX, —yn| — 0 and\Tnxn Twyn| — 0.

But this convergence is not uniform becaggf\ihm ToX| = supm
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Remark2. (i) The uniqueness of &H)-limit is not a direct consequence of its existence.
Let us consider the sequentk )nen+ given by Tox := x/n and the null maf., defined on
[0,1]. It is obvious thaf(T,) converges uniformly td. on [0,1] and then propertyH) is
satisfied. Consider another map defined on[0,1] by T)x: =0 if x € [0,1], T;1 := 1.
ThenT,, is also a(H)-limit of (Ty): for any sequencéx,) in [0,1], there exists a sequence
(Yn) := (% —Xn/n) C [0, 1] such thatx, — yn| — 0 and|TaXn — ToYn| = Xn/N— 0.

(i) If (T,) is a sequence of k-Lipschitz maps an&if C liminf X, then(T,) has at most
one continuougH )-limit. This is a consequence of propositions 1 and 9.

We now give our second result of stability.

Theorem 11. Let (X,d) be a metric spaceX,),,.; @ family of nonempty subsets of X and
let (Tn : Xn — X)),y @ family of mappings satisfying the prope(tt) and such thatJ is a
kwo-contraction. If, for any re N, x, is a fixed point of Tthen the sequenden )<y converges
10 Xeo.

Proof. By property (H), there exists a sequencg,) in X» such thatd(x,,yn) — O and
d(TnXn, TwYn) — O. From the following inequalities:

d(%n, Xeo) < A(TXn, TeoYn) + A (TeoYi, TeoXeo)
S d(TanaToan) + k°°d(ynax°°)
we get
d(Xn, %) < (1= keo) ~H(d(TaXn, Teo¥in) + Kol (Yin, X))
We immediately deduce the convergencé@f to Xe.. O

When all the domains are equal to the whole spaciadler’s theorem is a direct conse-
quence (cf. [4, Theorem 1]):

Corollary 12. Let(X,d) be a metric spacéT, : X — X)nen a sequence of mappings which
converges uniformly to a contraction mapping TX — X. If, for any ne N, x, is a fixed
point of T, then the sequenden)nen CONverges toX.

References

[1] BARBET, L., AND NACHI, K. Convergence des points fixes kieontractions (Conver-
gence of fixed points df-contractions). Preprint, University of Pau (2006).

[2] BONSALL, F. F.Lectures on Some Fixed Point Theorems of Functional Analyais
Institute of Fundamental Research, Bombay, 1962.

[3] NAcHI, K. Sensibilité et Stabilité de Points Fixes et de Solutions d’Inclusidhssis,
University of Pau, 2006.

[4] NADLER, S. B. R. Sequences of contractions and fixed poifacific J. Math. 27
(1968), 579-585.



58 Luc Barbet and Khadra Nachi

Luc Barbet Nachi Khadra

Laboratoire de Mathématiques Appliquées Department of Mathematics

CNRS UMR 5142 - Université de Pau et desUniversity of Es-Senia (Oran)

Pays de I'’Adour B.P. 1524, EI-Menaouer, 31000 Oran,
IPRA, B.P. 1155, 64013 Pau Cedex, FranceAlgeria

luc.barbet@univ-pau.fr nachikhadra@yahoo.fr



