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Abstract. In this paper we present a method to obtaf@ esurface approximating a La-
gragian data set in a polygonal domain and minimizing a certain “energy functional”. We
give a convergence result and a numerical and graphical example inv@%isgrfaces.
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81. Introduction

In the context of the fitting and design of curves and surfaces, variational methods based
on the minimization of a given functional have received considerable attention due to their
efficiency and usefulness. Such functionals typically contain two terms: the first indicates
how well the curve or surface approximates a given data set, while the second controls the
degree of smoothness or fairness of the curve or surface. For example, discrete smoothing
D™-splines [1, 2] and discrete smoothing variational splines [6] provide specific examples
of variational curves and surfaces. In [7] a functional of the above type is minimized in a
parametric space of bicubic splines. Moreover, in all cases the obtained splines approximate a
Lagrangian or Hermite data set. Other papers related to this matter are [3], [5] and references
therein.

In this work we present a method to obtairCaquadratic spline surface & 1) on a
polygonal domairD C R? which approximates a Lagrangian data set and minimizes an “en-
ergy functional” given by alinear combination of the usual semi-ndrmig, m=1,...,r+1,
on the Sobolev spadg’*1(D). The minimization space is a spline space constructed from
a Al-type triangulationZ over D and its Powell-Sabin associated subtriangulatign(cf.

(8]).

This paper is organized as follows: in Section 2, we recall some preliminary notations
and results. Section 3 is devoted to formulate the problem and to present a method to solve it,
while in Section 4 a convergence result is proved. In Section 5 we briefly describe the method
to obtain the basis functions with local support over the unit reference triangle, and we give
a numerical and graphical example for Franke’s test function.

§2. Notations and preliminaries

Let D ¢ R? be a polygonal domain and let us consider the Sobolev SgaclD), whose
elements are (classes of) functiandefined inD such thau and their partial derivatives (in
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the distribution sense&)® u belong toL?(D), with B = (B1, B2) € N2 and|B| = B1+ B2 < r+1.
In this space we consider the usual norm

1/2
lull = ( /85u dx) )
\ﬁ\<r+1

the semi-norms

1/2
|U|m:< ; /8ﬁu(x)2dx) , m=1,...r+1,
=i

and the corresponding inner semi-products

(U,V)m = /3Bu x)Pv(x)dx m=1,...r+1
\B\ m

We will consider a uniformAl-type triangulation7 of D, and the associated Powell-
Sabin triangulation7g of .7, which is obtained by joining the centfer of the inscribed
circle of each interior triangl§ € 7 to the vertices oflf and to the centreQy/ of the
inscribed circles of the neighbouring triangl€se 7. WhenT has a side that is on the
boundary oD, the pointQr is joined to the mid-point of this side, to the verticesloand to
the centre€) of the inscribed circles of the neighbouring trianglés: .7 .

We consider the set

§"4(D, %) = {S€ C'(D) : St € SHH(T) VT € 7},
where

SIT) = {SeCY(T): Sy € Po(T'), VT € %, T' C T,

andSis of class<C't at the vertices oT }

andP,(T’) indicates the space of bivariate polynomials of total degree at momstrT'.
Letn=2r+1 forr even andh=2r for r odd. Let[x] denote the integer part &f In [8] it

is shown that given the values of a functibridefined orD) and all its partial derivatives of

order at most + [5] at all the vertices of7, there exists a unique functi®e V;; (D, ) =

;DAL (b g5y such that the values &and all its partial derivatives of order at
mostr + [r /2] coincide with those of .

83. Formulation of the problem

Let g € H'™(D). Given, for anys € N*, a finite set of pointD* in D and a set of val-
uesZs = {g(a) }acps, we are looking for &"-surface > 1) that approximates the points
{(a,9(a)) }acps C R3 and minimizes the functional energy that is described below.
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Let k = k(s) = card D%) and let us denoté )y (resp. (- , -)k) the usual Euclidean norm
(resp. Euclidean inner product) RK. Let pS be the evaluation operatpf : H'*1(D) — RX
defined byp3(v) = (v(a))acps and let us suppose that

ker(p®) NP;(D) = {O}. (1)

Givent = (11,...,Tr+1), wheret; € [0,4) foralli =1,...,r andt ;1 € (0,4), let us
consider the functional defined & +1(D) by

r+1
JesV) = (P5V— 02+ 3 TV
m=1

Note that the first term 08, s measures how wel approximates the valuegy(a)}acps

over the set of point®® (in the least squares sense), while the second one represents the
“minimal energy condition” over the semi-norrnds, ..., |- |r+1 weighted by the parameters
T1,...,Tr+1, respectively. The minimization problem we want to solve is this:

Given aAl-type triangulation.Z of D and its associated Powell-Sabin triangu-
lation J%, we look for an elemem.'féS € Vi (D, %) such that

J5(0:8) < Jes(V), W e Vi(D, F). )

Theorem 1. Problem(2) has a unique solution that is also the unique solution of the follo-
wing variational problem:

Find GZS €V, (D, Z) such that

r+1 . 3
(p(02),p° (M + Y (078, VIm = (Z%p°(V))k, W E VA (D, ). )
m=1

Proof. Condition (1) allows us to be sure that— [v] = ((pS(v))2 + 3% lvi2) 72 is
a norm onV}(D, %) equivalent to||-||. As a consequence, the symmetric and continu-
ous bilinear forma: Vi (D, %) x Vi (D, %) — R, defined bya(u,v) = (pS(u), pS(v))x +

1 (U, V)m, is Vi (D, 16)-€lliptic. Besides, the mapping : /! (D, %) — R, defined by
o(v) = (Z5,p5(v)), is a linear and continuous form. We obtain the result by applying the

Lax-Milgram Lemma. O

Let us denotdN = dim(Vj (D, .%)). If {v1,...,w} is a basis of the finite element space

Vi (D, %) whose elements have local support, mﬁ = 2{\':1 a;Vi, then Problem (3) gives
rise to the linear system

CX =B, (4)
where
B— (@ aNlLy) . X=((@)lLy)'
r+1

C = (P ()P W)t 3 (v

Remarkl. It can be shown thdaf is a symmetric, positive definite and banded matrix.
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84. Convergence

LetA= (r+1)(r+2)/2 andA® = {a2,a),...,a3} be aP:-unisolvent subset db and let us
suppose that
supmin(x—a), =0(1/s), s— 0. (5)

xeD aecD
Then, there exis€ > 0 ands; € N* such that, for alk > s, there existda3, ...,a3} C D®
verifying
C .
(a?—a?)zgg, Vi=1,...,A Vs>s. (6)

Lemma 2. Let us suppose that (5) is verified and Iét-A{aj3,...,a3} C D® be any subset
verifying (6). Then, there exists s N such that, for each & s, the application] - | defined

by A 1/2
® = (iZV(a-S)2+ |v|?+1)

is a norm on H*1(D) uniformly equivalent with respect to s to the nojtmi|.

Proof. Letsy € N be such tha#® is aP,-unisolvent subset d for all s> s5. Then[[-]Sis a
norm onH'+1(D) for all s> sy. From the continuous injection &f"+1(D) into C°(D), there
existsCy > 0 such thaf[v]s < C; ||v|| for all s> 59 andv € H'+%(D).

On the other hand, for evegke N we have

Z Z —v a?))2+iiv(a«s>2

and from Sobolev’s Holder Imbedding Theorem for the spdice' (D) into C°(D), we obtain
12 0 , )
éi;\/( i)+ |V|r+1 < Z a’ —ad)3||vl[* + Z 24 |V|r+1’ Vse N*.

SinceAP is P -unisolvent, it follows that the application— (Zzl v(@)2+ |V|r+1)1/2 isa

norm onH"*1(D) that, besides, is equivalent fo || (see Proposition 1-2.2 of [2]). Hence,
there exist£, > 0 such that

Callv)|* < Z a) —ap)3Iv|I* + Z )2+ MP g, VSEN”.

Moreover, by (6) we have
Colvi? < 7IIVH2+Z )2+ VI, 1, VS > 51

Lets, > s be such thaAC?/s3 < C,. Then,Cz = C, — AC?/s5 satisfies
2

Calv2 < (02— ASE) VIP < (M2, ¥s > sz

1/2

ConsequentlyC;'“[|v|| < [V[® for all s> s,. Thus, it suffices to take® = max{sp,s2}. O
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Letge C™1(D) and let# C R} be a subset that admits 0 as an accumulation point. Let,
for eachh € ., .7 be a uniformA®-type triangulation oD such that is the diameter of the
triangles of7 . Let 7 be the associated Powell-Sabin triangulatiovoénds, € V,; (D, )
be the unique function that interpolates the valueg ahd its partial derivatives of order at
mostr + [r /2] at all the vertices of7.

Lemma 3. There exists G- 0, depending only on r and g, such that, for akh’#’, we have

max|(sh —g)(x)| < ChM* (7)
xeD
and
Sh—gm<CH"™ ™ ym=1_ r+1 (8)

Proof. The result is analogous to Theorem 2 in [8], taking into account that there Exis6s
such thafs, — gm < C max,.pmaxg|_m|d”? (s, — g)(x)| holds forallm=1,....r+1. O

Theorem 4. Let us suppose that, in addition to hypothesis (5), the following hypotheses are
verified:

There exist C> 0 and $ € N* such that ks) < C&foralls> s 9)
Try1=0(F), S— 4o (10)
Tm=0(Tr+1), S— 4o, Vm=1...r; (11)
2542
sh =0(1), s— +oo. (12)
Tr+1

Let G?,s be the unique solution of Problem (2) for the triangulatiég fixed before. Then,

Jim [lg—ofs[|=0.

Proof. SincecrﬂS is the solution of Problem(2), we haﬂe,s(o{‘_ys) < Jrs(sn), thatis to say:
r+1 r+1
h

(P(ofs— D)+ Y mlofelm < (P (-9 + S mmlsnla (13)
m=1 m=1

By (7) we know that there exis@ > 0 such thats,(a) — g(a))? < CR*™?2 for all a € DS and,
by using (8) and (9), we can be sure that there exists 0 such that

r

T

(P(—k+ 3 o Isnlnt [P
m=1

Tr+1 (14)

Csehat+2 g _ 2 _ 2
§7+§—Ch"+1m+ + (C1h"" +

Ta 1Tr+1( 1 lglm)”+ (C1 9lr+1)

for all s> s9. Moreover, from (10) and (12) we obtain

h=0(1), s— oo,
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Figure 1: Powell-Sabin triangulation @§.

and taking into account (11) and (12) we can be sure that there Exisands; € N* such

that SZ 2n+-2 r
C]_ h Tm
Y

Tr+1 =1 Tr+1
for all s> s;. By using (13), (14) and (15) we obtain

(CL™ ™4 gl + (Ch™" +[glr 11)> < C (15)

ofdl?1<C, (p*(0fs—9))k < Ctria, Vs st

The remainder of the proof is analogous to the proof of Theorem VI-3.2 in [2] from step
2), withs, DS, A andr instead ofd, A%, Mt andm— 1, respectively. O

85. Numerical and graphical examples

We have considered, for different valueskpfsetsD® consisting ofk points arbitrarily dis-
tributed over the domaib = [0, 1] x [0,1]. We have taken, for different values @funiform
partitions{ti = i/q}{, of the interval[0, 1] into g subintervals, from which we obtain uni-

form partitions ofD whose elements afgt;, ti 1] x [tj,tj,1] ﬁj;lo. By dividing each rectangle
{[ti,ti+1] % [tj,tj+1]} by the diagonal that joins the points, tj.1) and (ti;1,t;), we obtain a
Al-type triangulationZ of D formed by(q+ 1)? vertices, from which we consider its asso-
ciated Powell-Sabin’s triangulatiof.

In the examples presented in this work, we look@3rsurfaces, hence, the finite element
vector space considered (D, %) = %’3’3(D, s). To construct a basis of such space
whose elements have local support we have considered the reference ffianilevertices
A1 = (0,1), A, = (0,0) and Az = (1,0) and the linear functionals given ly(f) = f(A)
fori=1,23; Li(f) = f(A_3) fori=4,56; Li(f) = df(A_e) fori=7,8,9; Li(f) =
8{X’2} f (Ai,g) fori= 10, :I.:I.7 12; Li(f) = ax’yf (Aiflz) fori= 13, 14, 15; Li(f) = 8{%2} f (Aj_15)
fori= 16, 17, 18; Li(f) = a{x’g}f(A,-,lg) fori = 19,20,21; Li(f) = Bxl{y_rz}f(Ai,gl) fori =
22,23,24; Li(f) = dix 2y yf(Ai-24) for i = 2526,27; andLi(f) = gy 3y f(Ai_27) for i =
28,29, 30.

To compute the solution of the linear system (4), we have considered the basis functions
{w1,..., w30} over Ty that verifyLj(w;j) = ;. To this end, le{Ty,...,Te} be the microtri-
angles of the Powell-Sabin triangulation Tf (see Figure 1). Over each triandlg every

polynomial p of total degree five can be expressedpas) = i j k—o...5C A A3 A%, where
i+j+k=5
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Figure 2: Franke’s function and two approximating surfaces.

Number of Errors for Errors for Errors for
tiangles | * | ® | B | 1000 points | 2500 points | 5000 points

162 102[102[10°] 4951072 2.7-10°2 1.54.10 2
162 10°[10°[ 108 | 4.15.10°3 2.51.10°3 2.51.10°3
162 0 0 [10°] 167-10°7 1.06-10°2 8.12-10°3
722 102|102 10°| 4.98-1072 2.68-10°2 16-107
722 10°[10°| 108 1.3.10°3 1-103 9.51-10°4
722 0 0 |10° 22.10°72 1.48-10°2 8.04-10°°
722 0 0 [107] 151-10°3 1.09-10° 3 8.02-10°4

Table 1: Table of errors for different values of the parametegsandk.

(41,2, A3) is the vector of barycentric coordinates)ofvith respect tdly, for all x € Tq. By
applying the relations (see [4]) that must verify tBecoefficients of a given functior in
order to be of clas€?, we determine th&-coefficients of the basis functiosv }3°, .
Figure 2 shows the graphic of Franke’s function (on the left) and of approximating sur-
faces forq = 4, k = 1500, 71 = 75 = 102, 73 = 10~* (in the middle) andy = 14, k = 1600,
71 = 7o = 107°, 13 = 1078 (on the right).
The error estimations have been computed by using the relative error formula

_ ( ol(f —0)(@

o f(2w)?

)2)1/2’

where {ay,...,a2500} are arbitrary points irf0, 1]2, f is Franke’s function and = 772
Table 1 shows the errors committed for different values,@f andk.
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