
Monografías del Seminario Matemático García de Galdeano33, 199–205 (2006)

A TWO-DIMENSIONAL RUIN PROBLEM ON

THE POSITIVE QUADRANT, WITH

EXPONENTIAL CLAIMS: FEYNMAN-KAC

FORMULA, LAPLACE TRANSFORM AND ITS

INVERSION

Florin Avram, Zbigniew Palmowski and Martijn Pistorius

Abstract. We consider an exit problem of a certain two-dimensional process from a
cone, inspired by applications in insurance and queueing theory. One motivation is to
study the joint ruin problem for two insurance companies (insurance/reinsurance), or for
two branches of the same company, which divide between them both claims and premia
in some specified proportions, the goal being to split the risk (in particular when the
claims are big). Another motivation is to provide an example of a multi-dimensional
ruin model admitting analytic solutions. Indeed, we succeed, in the simplest particular
case of exponential claims, to derive both the Laplace transform of the perpetual ruin
probabilities, and to invert it, obtaining therefore an explicit solution for our model.
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§1. A two dimensional ruin problem

In this paper we consider a particular two dimensional risk model in which two companies
split the amount they pay out of each claim in proportionsδ1 andδ2 whereδ1 +δ2 = 1, and
the premiums according to ratesc1 andc2. LetUi denote the risk process of thei’th company

Ui(t) :=−δiS(t)+cit +ui , i = 1,2 ,

whereui denotes the initial reserve and

S(t) =
N(t)

∑
i=1

σi

for N(t) being a Poisson process with intensityλ and the claimsσi being i.i.d. random
variables independent ofN(t) with distribution functionF(x). We shall denote byµ the
reciprocals of the means ofσi , respectively. We shall assume that the second company, to be
called reinsurer, gets smaller profits per amount paid, i.e.:

p1 =
c1

δ1
>

c2

δ2
= p2.
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Figure 1: Geometrical considerations

As usual in risk theory, we assume thatpi > ρ := λ

µ
, which implies that in the absence of

ruin,Ui(t)→ ∞ ast→ ∞ (i = 1,2). Ruin happens at the timeτ = τ(u1,u2) when at least one
insurance company is ruined:

τ(u1,u2) := inf{t ≥ 0 :U1(t) < 0 or U2(t) < 0},

i.e. at the exit time of(U1(t),U2(t)) from the positive quadrant. In this paper we will analyse
the perpetual or ultimate ruin probability:

ψ(u1,u2) = P[τ(u1,u2) < ∞] . (1)

Although ruin theory under multi-dimensional models admits rarely analytic solutions, we are
able to obtain in our problem a closed form solution for (1) ifσi are exponentially distributed
with intensityµ.

Geometrical considerations. The solution of the two-dimensional ruin problem (1)
strongly depends on the relative sizes of the proportionsδδδ = (δ1,δ2) and premium rates
c = (c1,c2) – see Figure 1. If, as assumed throughout, the angle of the vectorδδδ with
the u1 axis is bigger than that ofc, i.e. δ2c1 > δ1c2, we note that starting with initial
capital (u1,u2) ∈ C in the coneC = {(u1,u2) : u2 ≤ (δ2/δ1)u1} situated below the line
u2 = (δ2/δ1)u1, the process(U1,U2) ends up hitting at timeτ the u1 axis. Thus, in the
domainC ruin occurs iff there is ruin in the one-dimensional problem corresponding to the
risk processU2 with premiumc2 and claimsδ2 σ .
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One dimensional reduction.A key observation is thatτ in (1) is also equal to

τ(u1,u2) = inf{t ≥ 0 : S(t) > b(t)},

whereb(t) = min{(u1 +c1t)/δ1,(u2 +c2t)/δ2}. The two dimensional problem (1) may thus
be also viewed as a one dimensional crossing problem over a piecewise linear barrier. Note
the relation to asset-liability management models, in which regulatory requirements impose
prescribed limits of variation for the difference between the assetsP(t) of a company and its
liabilities S(t) (see [6]), and which also translate typically into (several) linear barriers.

In the case that the initial reservesu1 andu2 are such that(u1,u2) ∈ C , that is,u2/δ2 ≤
u1/δ1, the barrierb is linear,b(t) = (u2 + c2t)/δ2, the ruin happens always for the second
company. Thus, as we already observed, the problem (1) reduces in fact to the classical
one-dimensional ultimate ruin problem with premiumc2 and claimsδ2σ , i.e.

ψ(u1,u2) = ψ2(u2) := P(τ2(u2) < ∞),

whereτ2(u2) = inf{t ≥ 0 :U2(t) < 0} andψ2(u2) is the ruin probability ofU2, with U2(0) =
u2.

Solution in the lower coneC . By the equation above, the solution in the lower coneC
coincides with the ultimate ruin probabilityψ2(x2) of the classical risk processU2(t)/δ2 with
drift p2, claimsσi and initial pointx2 = u2/δ2.

Let us recall some basics of the theory of one-dimensional ruin – see e.g. [8] or [1]. For
phase-type claims(βββ ,BBB), i.e. withP[σ > x] = βββeBBBx1, the ruin probability may be written in
a simpler matrix exponential form:

ψ2(x2) = ηηηe(BBB+bbbηηη)x21,

with ηηη = λ

p2
βββ (−BBB)−1 (see for example (4) in [2]), and in the case of exponential claim sizes

with intensityµ, it reduces to:
ψ2(x2) = C2e−γ2x2,

whereγ2 = µ−λ/p2 andC2 = λ

µ p2
.

In the opposite caseu2/δ2 > u1/δ1 however, when a barrier composed of two lines is
involved, the problem is considerably harder. We will analyze only the case of exponential
claim sizes.

As always in the case of phase-type jumps, it is possible to provide a “Feynman-Kac”
differential system for the perpetual ruin probabilities (for example by embedding the semi-
Markov jump process into a fluid model). The following result was shown in [5], the full
version of this paper:

Theorem 1. The vector(ψ(u1,u2), φ(u1,u2))T containing the perpetual ruin probability as
its first coordinate is the solutions of the Feynman-Kac system:(

c1 0
0 −δ1

)(
ψu1

φu1

)
+
(

c2 0
0 −δ2

)(
ψu2

φu2

)
+
(
−λ λ

µ −µ

)(
ψ

φ

)
=
(

0
0

)
with the boundary condition:ψ(u1,

δ2
δ1

u1) = C2e
−γ2

δ2
δ1

u1, for all u1≥ 0,

φ(0,u2) = 1, for all u2≥ 0.
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The system above is also equivalent to the hyperbolic “telegraphic type” equation:

hrw + µλ h = 0

with the boundary condition: h(r,0) = C2e−(γ2−µ) r for all r ≥ 0,

hw(r,− δ1r
c1

) =−λeµr−λ
δ1r
c1 for all r ≥ 0,

where
h(r,w) := eµre−λw

ψ(r,w).

Unfortunately, the solution of neither of these two formulations is obvious. The rescue came
finally from obtaining an equation for the double Laplace transform inu1,u2 (Theorem 2) and
inverting this transform in the complex plane using Bromwich type contours (Theorem 3).

§2. The Laplace transform

First note that process(U1(t)/δ1,U2(t)/δ2) has the same ruin probability as the original two-
dimensional process(U1(t),U2(t)). Thus it suffices to analyze the case whenδ1 = δ2 = 1 and
c1 = p1, c2 = p2. Let xi = ui/δi . In this section we will writeψ(x1,x2) for ψ(u1,u2) under
the above assumptions. By conditioning at the position of the process at timeT (the time of
crossing of the two lines forming the barrierb(t)):

T = T(x1,x2) =
x2−x1

p1− p2
(2)

it was shown in [4] that ifx2 > x1, it holds that

ψ(x1,x2) := 1−ψ(x1,x2) =
∫ ∞

0
ψ2(z) P̃x1,T(dz), (3)

where
P̃x1,T(dx) = Px1( inf

s≤T
U1(s) > 0,U1(T) ∈ dz)/dz

and
ψ2(z) := 1−ψ2(z) = 1−C2e−γ2z. (4)

Suprun [7] (see also Bertoin [3, Lem. 1]) gives the resolvent of a spectrally negative Lévy
process killed as it enters the nonpositive half-line as

1
q

Px1( inf
s≤eq

U1(s) > 0,U1(eq) ∈ dz)/dz

= exp{−q+(q)z}W(q)(x1)−1{x1≥z}W
(q)(x1−z),

(5)

whereq+(q) largest root ofκ(α) = q where the characteristic exponentκ is given in this case
by

κ(α) = p1α− λα

µ +α
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andW(q) : [0,∞)→ [0,∞), called theq-scale function, is continuous and increasing function
with Laplace transform∫ ∞

0
e−αyW(q)(y)dy= (κ(α)−q)−1, α > q+(q).

Now we obtain the Laplace transform of the non-ruin probability with respect to the initial
reserves:

ψ̃(p,q) =
∫ ∞

0

∫ ∞

0
e−px1e−qx2 ψ(x1,x2)dx1dx2.

Note that

ψ̃(p,q) =
∫ ∞

0

∫ x1

0
e−px1e−qx2ψ(x1,x2)dx2dx1 +

∫ ∞

0

∫ ∞

x1

e−px1e−qx2ψ(x1,x2)dx2dx1.

The first Laplace transform is given by∫ ∞

0

∫ x1

0
e−px1e−qx2[1−C2e−γ2x2]dx2dx1 =

1
p

[(1−C2)(p+q)+ γ2]
(p+q)(p+q+ γ2)

:= A.

Writing s= p+q andr = (p1− p2)q we see from (3) and (5) that the second Laplace trans-
form is given by∫ ∞

0

∫ ∞

x1

e−px1e−qx2ψ(x1,x2)dx2dx1

= (p1− p2)
∫ ∞

0

∫ ∞

0
e−sx1

[
1−C2e−γ2z][e−q+(r)zW(r)(x1)−1{z≤x1}W

(r)(x1−z)
]
dzdx1

=
p1− p2

κ(s)− r

[
(1−C2)q+(r)+ γ2

q+(r)(γ2 +q+(r))
− 1

s
+

C2

γ2 +s

]
=

p1− p2

κ(s)− r

[
γ2(q+(r)/µ +1)

q+(r)(γ2 +q+(r))
− (µ + p+q)(1−C2)

(p+q)(γ2 + p+q)

]
:= C−B.

Note thatA−B is equal to

(1−C2)p2

p(κ(s)− r)
=

(µ + p+q)(p2−ρ)
pp1(z1(q)− p)(z2(q)− p)

,

where

z1(q) =
−(p2q+ p1(q+ γ1))−

√
(p2q+ p1(q+ γ1))2−4p1qp2(q+ γ2)

2p1
,

z2(q) =
−(p2q+ p1(q+ γ1))+

√
(p2q+ p1(q+ γ1))2−4p1qp2(q+ γ2)

2p1
.

Similarly,C can be written as

p1− p2

κ(s)− r
γ2(q+(r)/µ +1)

q+(r)(γ2 +q+(r))

=
(µ + p+q)(p2−ρ)

pp1(z1(q)− p)(z2(q)− p)

[
p

(p1− p2)(q+(q(p1− p2))+ µ)
p2(q+(q(p1− p2))(γ2 +q+(q(p1− p2))

]
.
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Theorem 2. The Laplace transform of the perpetual ruin probabilityψ(u1,u2) is given by

ψ̃(p,q) =
(µ + p+q)(p2−ρ)(1+ ph(q))

pp1(p−z1(q))(p−z2(q))
, (6)

where

h(q) =
(p1− p2)(q+(q(p1− p2))+ µ)

p2(q+(q(p1− p2))(γ2 +q+(q(p1− p2))
.

Noting thatq+(q(p1−p2)) is the largest root ofκ(α) = q(p1−p2) andz2(q) is the largest
root of κ(v+q) = q(p1− p2) we identify

q+(q(p1− p2)) = z2(q)+q.

Hence

h(q) =
(p1− p2)(z2(q)+q+ µ)

p2(q+z2(q))(γ2 +q+z2(q))
. (7)

Let h±(q) be ah(q) when we putz± instead ofz2(q) and

z−(q) = a(q)− ib(q), z+(q) = a(q)+ ib(q)

for

a(q) =
−(p1µ−λ + p2q+ p1q)

2p1
,

b(q) =

√
4p1(p2qµ + p2q2−λq)− (p1µ−λ + p2q+ p1q)2

2p1
.

An explicit inversion is possible here - see full version of this paper [5]:

Theorem 3. Let x2 > x1. If ρ ≤ p2
2

p1
holds, then

ψ(x1,x2) = 1−C1e−γ1x1 +ω(x1,x2),

where

ω(x1,x2) =
1

4π

∫ q−

q+
(h−−h+)(q)

(
f (z+(q),q)− f (z−(q),q)

)
dq

for

q+ =− 1
p1− p2

(
√

λ +
√

p1µ)2, q− =− 1
p1− p2

(
√

λ −
√

p1µ)2

and

f (p,q) =
(µ + p+q)(p2−ρ)

p1b(q)
epx1eqx2.

If ρ >
p2

2
p1

holds, then

ψ(x1,x2) = 1−C1e−γ1x1−C2e−γ2x1 +
p2

p1
e−γ3x1e−γ2x2 +ω(x1,x2),

whereγ3 = µ

p2

(
ρ− p2

2
p1

)
.
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