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BIHARMONIC PROBLEM IN THE HALF-SPACE

Chérif Amrouche and Yves Raudin

Abstract. In this paper, we study the biharmonic equation in the half-sﬁé}hewith
N > 2. We prove inLP theory, with 1< p < o, existence and uniqueness results. We
consider data and give solutions which live in weighted Sobolev spaces.
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81. Introduction and functional framework

The purpose of this paper is the resolution of the biharmonic problem with nonhomogeneous
boundary conditions
Nu=f inRY,
(P){u=gy onl=RN-1
onu=g; onrl.

Since this problem is posed in the half-space, it is important to specify the behaviour at
infinity for the data and solutions. We have chosen to impose such conditions by setting our
problem in weighted Sobolev spaces, where the growth or decay of functions at infinity are
expressed by means of weights. These weighted Sobolev spaces provide a correct functional
setting for unbounded domains, in particular because the functions in these spaces satisfy
an optimal weighted Poincaré-type inequality. Our analysis is based on the isomorphism
properties of the biharmonic operator in the whole space and the resolution of the Dirichlet
and Neumann problems for the Laplacian in the half-space. This last one is itself based
on the isomorphism properties of the Laplace operator in the whole space and also on the
reflection principle inherent in the half-space. Note here the double difficulty arising from the
unboundedness of the domain in any direction and from the unboundedness of the boundary
itself.

Problem(P) has been investigated by Boulmezaoud (cf. [3]) in weighted Sobolev spaces
in L2 theory forN > 3 and without the critical cases corresponding to logarithmic factors.
The aim of this work is to give results IoP theory, with 1< p < =, to reduce critical values
and especially to reach weaker solutions from more singular data.

In the sequel, for any integey we shall use the following polynomial spaces:

o ¥y is the space of polynomials of degree smaller than or equgl to

° 9@ is the subspace of harmonic polynomials#j;

. 9/"@2 is the subspace of biharmonic polynomialsZg;
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. %A is the subspace of polynomials 64, odd with respect to, or equivalently,
which satisfy the conditiop (X', 0) = 0;

. %A is the subspace of polynomials 61’@, even with respect t&y, or equivalently,
which satisfy the conditioay ¢ (X',0) = 0;

with the convention that these spaces are reducé@jtif g < O.
Let Q be an open set &N with N > 2, p = (1+|x|?)¥2 and Igp = In(2+ [x/?).
Foranyme N, p€ |1, »[, («, B) € R?, we define the following space:

W(@) = {ue 7(Q); 0< A <k p* ™1 (Igp)Ptotue LP(Q);
= (2)
k+1<2|<m, p* ™R (igp)f dPueLP(@)},

wherek=m—N/p—aif N/p+a e {1,...,m}, andk = —1 otherwise.
In the case = 0, we simply denote the space ;" "(Q). Note that\NZ’ﬁp(Q) is a
reflexive Banach space equipped with its natural norm: '

||u\|Wm,p(Q):( v ||pa_m+m(|gp)/3—1a/1u|\fp(m
*p o<<k

_ 1/p
PN (19p) *ul[fyiq)) -
k+1<[A|<m
We also define the semi-norm:

1/p
e = <a;m”pa(lgp PP otullng)

The weights in the definition (1) are chosen so that the corresponding space satisfies two

properties. On the one hand(RY) is dense ir\Nm’ﬁp(Rﬂ). On the other hand, the following

Poincaré-type inequality holds Wm p(RN) (cf. [1]):

if %+(X¢{17...,m} or (B—1)p#—1, 2

then the semi-norn- ‘WLT,‘E(M) defines onW;"/(RYY)/Z¢ a norm which is equivalent to
the quotient norm, witlyy' = inf(q,m— 1), whereq is the highest degree of the polynomials
contained ir\Nz’ﬁp(Rﬂ).
——llymp g

Now, we define the spathl1 E(RN) 2(RY) Yo @ whose dual space is denoted
byW ﬁ( ), wherep' is the Holder conjugate gf. Under the assumption (2), the semi-
norm| - ‘ngﬁ(m) is anorm or\Ngzg(R’j‘r) which is equivalent to the full norri- HWE’E(M)'

We shall now recall some properties of the weighted Sobolev spfﬂgg’ﬂ%ﬂ). We have
the algebraic and topological imbeddings: '

1 0. .. N
WIPRY) — W EP(RY) o o WOR(RY) f prad (Lo, m.
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WhenN/p+a = j € {1,...,m}, then we have:

1, 0,
W (RY) — - W Jljl §RY) =W Jlﬁp (RY) = oWRP o RY).

Note that in the first case, for anye R such thalN/p+o — vy ¢ {1,...,m} andme N, the
mappingu € Wmﬁp(RN) — pTue W&"f}’, 5(RY) is an isomorphism. In both cases and for

any multi-indexA € NN, the mappingi W&“’B’J(Rﬁ) — dtu eW(:;W’ P(RN) is continuous.
Finally, it can be readily checked that the highest degreéthe polynomials contained in
WP (RY) is given by
N | S+ec{s... ,mandB-1)p>-Llor
m— ( + oc) -1, if ) .
- P Ntae{jez;j<0}andfp> -1, 3)

N .
[m— (p +a>] ,  otherwise

where[s] denotes the integer part sf
In order to define the traces of functionswf* P(RY) (here we don't consider the case
B #0), for anyo € 0, 1], we introduce the space:

Wy P(RN) = {u e 72’ RN);wueLPRY) andVi=1,...,N,
. 4)
/ 1 "pdt/ u(x+te) — u( )|pdx<oo}
JO

wherew = p if N/p+# ¢ andw = p (Igp)¥/? if N/p= o, andey,...,ey is the canonical
basis ofRN. It is a reflexive Banach space equipped with its natural norm:

g = (L =B " o)
WO [ILP(RN) Z

which is equivalent to the norm
u P ue) —u)lP P
(HW" HLp(RN) +/RN><RN \x—y|N+GP dxdy )
Similarly, for any real numbest € R, we define the space:
Wy P(RN) = {u e 2'(RNY; w*%ue LP(RN),

[p*(X)u(x) — p*(y)u(y)[?
/RNXJRN x—yNTop dxdy< 00}7

wherew = p if N/p+ o # o andw=p (Igp)¥(°~% if N/p+ o = . For anyse RT, we
set

WePRY) = {ue 7/(RN);0< (4] <k, p* =P (igp) otue LPRY);

kt1<|A|<[g—1, p* st otuec LPRN); [A| =g, 2 uew"p(RN)}
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wherek=s—N/p—aif N/p+a € {o,...,0+[g}, with c = s—[g andk = —1 otherwise.
It is a reflexive Banach space equipped with the norm:

||UHW;=”(RN) = (0<;<k“pms+pk ('9P)713&UH|'_);3(RN)

_ 1/p
+ Hp(X %lllalu||fp(RN)) + z HaAUHW&’p(RN)
k+1<|AT<[9-1 s

We can similarly define, for any real numbgrthe space:

W;Z(]RN) = {ve 72'RN); (|gp)ﬁ\,€W§p(RN)}_

We can prove some properties of the weighted Sobolev spﬁ@%&(RN). We have the
algebraic and topological imbeddings in the case whetp+ a ¢ {o,...,0+[9}:

Wip(RN)(—)W%l’p(RN)%-~~%W§;p (RN),

a,B o—18 [¢.8
N [s.p N 0, N
W;AIF;(R ) (_)Waﬁ—[s]—s,B(R )= ;)Wa—psﬁ(R )-

WhenN/p+oa = j € {o,...,0+[g}, then we have:

s.p s—j+1,p s—i,p o,p
Wa,ﬁ = ‘_’Wa—j+1,[5 HV\/oc—j,ﬁ»—l o ;)Waf[s],ﬁfl’
S, p [¢,p [§—j+Lp [S-i.p 0,p
Wep “Woiig—sp = Wolo jiip “Woo g1 2 Wolspa

If uis a function oriRﬂ, we denote its trace of ordgron the hyperplan€ by:
VieN, yu:xX eRVT— 9lux,0).

Let’s recall the following trace lemma due to Hanouzet (cf. [5]) and extended by Amrouche-
NeCasové (cf. [1]) to this class of weighted Sobolev spaces:

Lemma 1. For any integer m> 1 and real number, the mapping
o m-1
Y: (’}/07,)/17 . -va—l) : ‘@(Rm) — I_L ‘@(RN_l)’
J:
can be extended to a linear continuous mapping, still denoted by
m-1 1
v W P(RY) — T we PR,
J:

o

Moreovery is surjective andkery = Wy P(RY).
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§2.0ntheLapbceequaﬂonimRﬁ

We shall now recall the fundamental results of the Laplace equation in the half-space, with
nonhomogeneous Dirichlet or Neumann boundary conditions. Let’s first recall the results of

the Dirichlet problem
Au=f inRY,
(Pp) { y
u=g onrl.

Theorem 2(Amrouche-Néasovd) Let/ € Z and assume that
N N
—¢{1,....4} and —¢{1,...,—(}. (5)
o p
-1,p N 1-1/p,p . . T "
Forany fe W, »"(RT) and ge W; (I") satisfying the compatibility condition
A _
V(P S Jy[l+£7N/d]7 <f, (P>\N[717P(RT_)><V(\)/J:EI (Rﬂ) - <gv aN (P>W{1/p,’p([’)xW:él/p/’pl(F) 9 (6)

problem(Pp) has a solution & W;"P(RY), unique up to an element @Y[ffsz/p}-

Theorem 3(Amrouche-Néasovd) Let/ € Z and m> 1 be two integers and assume that

N N
a§é~{l7...,€+1} and 6§é{17...,—€—m}. (7)

For any fe W "P(RY) and ge Wmmj_l/p’ P(1"), satifying the compatibility condition (6),
problem(Pp) has a solution «& Wmmjél’p(Rﬂ), unique up to an element @f’[f_ﬂ_N/m.
Concerning the Neumann problem

Au=f inRN
P *
(Pn) {8Nu:g onl,

we can give the following result

Theorem 4(Amrouche) Let/ € Z and me N and assume that
%¢{1,‘..,1z} and %¢{1,...,—€—m}. (8)

Forany fe W' /(RY) and ge Wn'mlfl/p’p(r) satifying the compatibility condition

A _
V(P € </‘/[[7N/p']’ <f’(p>V\/f’p(Rﬂ)xW9[p, (Rﬂ) + <g7 (P>W{1_1/p’p(r) XW:Z-/P/:P,(F) - 07 (9)
. m-2,p/mpN : A
problem(Py) has a solution & W, /"~ "(RY), unique up to an element O)V[Z—Z—N/p]'

Remarkl. Note that for these three theorems, the solutions continuously depend on the data
with respect to the quotient norm.
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§3. Generalized solutions of\? in R

Firstly, we establish a global result for the biharmonic operator in the whole space:

Theorem 5. Let/ € Z and me N and assume that

N . N

H§é{1,...7€+m|n{m,2}} and Bgé{l,...,—é—m}, (10)
then the biharmonic operator

i 2, 2 —2, 2
D2 WP RN /25 g — Wi TR L 25

is an isomorphism.
Secondly, we characterize the kertig™ of the operatofA?, 1o, 11) in Wmmj’ P(RY). For
anyqg € Z, we introduce the spac#, as a subspace c@éz:
By = {ue @éz;u:aNu:Oonr}.

Then we define the two operatdiig, andMy by:

vr e o, I'IDr:%/

XN A 1 XN
tr(x,t)dt and Vse 4", I'INs:éxN/ s(X,t)dt.
0

0

N
Lemma 6. Let/ € Z and me N and assume thag ¢ {1,...,—¢—m}, then

AT =B ionyp =Mooy OTINA (11)

Pl
Thirdly, we establish a global result for the homogeneous problem in the half-space:
A%u=0 inRY,

(P {u=go onr,
onu=g; onrl.

Lemma 7. Let/ € Z and me N. Under hypothesis (8), for anyg WnT:f_l/p’p(r) and
g1 € Wmmle_l/p’ P(I"), satisfying the compatibility condition

Vo € Blori—np) s (91,80)r — (Do, INA@) =0, (12)

problem (P%) admits a solution Wm"fez’p(Rﬂ), unique up to an element 682 ;_n/p),
and which continuously depends on the data with respect to the quotient norm.

Finaly, we can give the main result for the biharmonic operator in the half-space:
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Theorem 8. Let ¢ € Z. Under hypothesis (5), for any ¢ W, 2P(RY), go € W~ VPP
andg €W, Y/P-P(1') satisfying the compatibility condition

Vo € Barenyp)s (F.0),, 2PN i d(Rer(gLA@r*<90,9NA<P>r =0, (13)

problem(P) admits a solution & V\/f’p(Rﬁ), unique up to an element o8,_,_y, and
which continuously depends on the data with respect to the quotient norm.

Proof. We can readily check the necessity of condition (13), wheteAe) denotes the
duality brackei(gl,A(p> L AT and(go, InAg) - the duality bracket

(9o, INAY), 2Py W PP ()
Then, by Lemma 1, we can consider the lifted problem
Au=f inRY,
(P) cu=0 onrl,
owu=0 onl,

wheref e W, >P(RY) andf L Pip+1-N,p)» Which corresponds to (13).
We shall give now a characterizatioan’ PRY):

Lemma 9. For any fe W, >P(RY), there exists F= (Fij)1<i jon € V\IZO‘F’(IE&’E)'\I2 such that

f =divdivF = zlj 1aZFIJ,wnh Zl = 1||F.J\|WopRN) < C||f|\W[2,p(M).
Finally, we can give the outline of the proof of the existence:

Step 1. Assume that 2-/—N/p’ < 0. Let f eW’2 P(RY). Then by Lemma 9, we can

write f = 92F;. LetFj the extension ofj to RN by 0 andf = 92F; e W, *P(RN). By

Theorem 5, there exists€' W2 P(RN) such thatf = A2Z in RV, and writingz = Zly, we

havef = A2zin RY, with ze W»P(RN), zr e W>/PP(I) andanz € W /PP(T). Since
PBia1i-n/p) = {0}, the compatibility condition (12) vanishes in Lemma 7 which asserts the
existence of a solutione V\/f’ P(RY) to the homogeneous problem

Av=0 inR"Y, v=z and dyv=0dnz onr.

The functionu = z— v answers to problertP*) in this case.
Step 2. Assume that 2- ¢ — N/p < 0. We have shown that if 2 ¢ —N/p’ < 0, the operator

02 WEPRY) /By — W, 2 P(RY)
is an isomorphism. Thus, by duality we deduce # 2— N/p < 0, the isomorphism
N?: W2 p(RN) — W, 2 p( _~N_) 1 %[ZJF[,N/M.

Step 3. Assume that 2-¢/—N/p’ > 0and 2-/—N/p > 0, which implies/ € {—1,0,1}. We
begin to establish a preliminary result:
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Lemma 10. Let? € {—1,0} and assume that o # 1if £ = —1. Forany fe VVZO”’(RE),
there exists z W,* P(RY), such that\?z = f.

Then we can prove in a similar fashion to Step 1 the isomorphism resul&fdr1, 0},
and we deduce the caée- 1 by duality from¢ = —1.
It remains to combine the three steps to obtain the isomorphism

0 :W%p(RE)/%[Zf/&N/p] — W, 2PRY) L Blar1-N/p)s

for any ¢ € Z verifying (5). This answers globally to proble®*) and thus to general
problem(P). O

To extend Theorem 8, we also have establish a global result for different types of data.
Theorem 11. Let¢ € Z and me N. Under hypothesis (10), for anye‘Wn'ij’p(RJNr), Qo €
WPy and g e Wi PP(T) satisfying the compatibility condition (13), problem
(P) has a solution & Wmmjf’ P(RY), unique up to an element Hjp_s_n/p), With the estimate

inf u-+ .
qe%[z,g,N/p] || q”Wmm;r(ZP(Rﬂ)

g C (” f HWrIrT}:/zp(R[\d) + ||go||wr:‘$2*l/pp(r) + g1|Wnn:+Hll/p'p(r>) .
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