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STOKES AND NAVIER-STOKES EQUATIONS
WITH PERIODIC BOUNDARY CONDITIONS AND
PRESSURE LOSS

Chérif Amrouche, Macaire Batchi and Jean Batina

Abstract. The object of this present work is to show the existence and uniqueness results
for the Stokes and Navier-Stokes equations which model the laminar flow of an incom-
pressible fluid inside a two-dimensional plane channel with periodic sections. The data
of the pressure loss coefficient in the channel enables us to establish a relation on the
pressure and to thus formulate an equivalent problem.
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81. Introduction

The problem which one proposes to study here is that modelling a laminar flow inside a
two-dimensional plane channel with periodic section. Qete an open bounded connected
lipschitzian set ofR? (see figure hereafter), and its bounda@rjs ' = FoUT 1 UT 2, where

Mo = {0} x]—1,1] andl'y = {1} x]—1,1[. One defines the space

V= {ve H1(Q) ; divw=0,v=0o0nT>, V|r0:V|r1}'

Here, there are not external forces and viscosity is equal to 1. Thusd4oR given, one
considers the problem

Findu €V such that

: 1
()9 w ev, / Ou.Ovdx = n/ vi(Ly) dy.
Ja -1

§2. Stokes problem(.%)

With an aim of drawing up the suitable functional framework of the problem, firstly one
proposes to study the problepy’).

Theorem 1. Problem() has an unique solution € V. Moreover, there exists a constant
depending only 0®, C(Q) > 0, such that:

[ullyriq) < wC(Q). 1)
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Figure 1: Geometry of channel

Proof. Let us note initially that spacé provided the nornt-ll(Q)2 being a closed subspace
of H1(Q)? is thus an Hilbert space. Let us set

+1
a(u,v) :/ Cu.Ovdx, I (v) :n/ vi(1,y) dy.
Q -1
It is clear, thanks to the Poincaré inequality, that the bilinear continuous fovyceercive.

It is easy to also see thhE V’. One deduces from Lax-Milgram Theorem the existence and
uniqueness afi solution of(.”). Moreover,

1/2

X 1
[ iouax < mva( [ Cwaytay)

10ulfZ2(q) < 2V2|ull 2y < 7V2|Ullyar) -
Q) )

Thanks to the trace Theorem properties, finally one gets
||DUH52(Q) < 7C1 (Q) Jullyr(q) -

which implies the estimate (1). O

83. Equivalent formulation of problem (.&)

We now will give an interpretation of the problefs¥’). One introduces the space
¥ = {ve 2(Q)?; divv:o}.
Let u be the solution of.#). Then, for allv € ¥/, one has

<—AU, V> Z(Qx2(Q) = 0.
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So that thanks to De Rham Theorem, there expsts?’ (Q) such that
—Au+0Op=0inQ. (2)
Moreover, sincélp € H~1(Q)?, it is known that there existge L2(Q) such that (see [1])
Og=0Opin Q. 3)

The open sef) being connected, there exisIsc R such thatp = g+ C, what means that
p e L?(Q). Let us recall that (see [1])

Jnt Ip+Kll2q) < ClIOR, -
One deduces from the estimate (1) and from (2) that

Jnf IP+Kllzq) < CllAUll,-1ge < Cllullya g2 < 7C (Q).

Sinceu € H1(Q)? and0 = —Au+Op € L2(Q)?, itis shown that-du/dn+ pn € H-Y/2(I)?
and one has the Green formula: forak V,

/(—Au+Dp).vdx:/ Du.Dvdx+<—au+pn,v>, 4)
Q Q an
where the bracket represents the duality proddict/2 (M) x H/2(I"). Moreover, asp €

L2(Q) andAp=0inQ, one hagp € H1/2(T"). Consequently, one has therefene/don ¢
H-%2(")2. The functionu being solution of(.#), for all v € V, one has according to (2)

and (4):
Ju +1
<a—pn,V>=7r/ vi(Ly) dy, ()
n -1
Jdu u
<ax—pe1,V>rl+<—aX+pe1,V>ro—<7re1,V>r1, (6)
where{g} is the orthonormal basis.

i) Letu e Hgéz(rl) and let us set

U, onlQurly, <0>
= and =
Ha {0, only, K M2 )’

where (see [2])
Hal? (M) = {(p €L2(My); 3ve HY(Q), withv| =0, V| = go}.
It is checked easily that

peHY2(r)? and /y.ndc:O.
r
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So that there exists € H! (Q)? satisfying (see [3])
divv=0 in Q and v=p on'l.

In particularv € V and according to (6), this yields

o
axvu rl_ ax7u r07

which means that

du au
x|, x Q
My )
One deduces now from (6) that, for &lE V,
8u1 aul _
<ax_pvvl>rl+<_ax+p7vl>ro_<7rvvl>rl' (8)
But, divu=0 anduz|rl = U2|r0- one thus has
Wi, 9l X |, IX|p,
Consequently, thanks to (8) one deduces:
(=P:Va)r, + (P Va)r, = (T, V1), (10)
if) While proceeding as i), one shows that
Ply, = Plp, — 7 (11)

where the equality takes place with thé/2 sense. In short, ifi € Hl(Q)2 is solution of
(), then there existp € L2 (Q), unique up to an additive constant, such that:

—Au+0p=0 in Q, (12)
divu=0 in Q, (23)
u=0 on Iy u|rl:u|ro, (14)
du du

2z = 2= 15
X, IX|r, (19)
p‘rl = p|r0 —T. (16)

Itis clear that, if(u, p) € H2(Q)? x L2(Q) checks (12)—(16), themis solution of(.7").

Theorem 2. The problem (12)—(16) has an unique solutjonp) € H1(Q)? x L2(Q), up to
an additive constant for p. Moreover,\verifies(.#) and

[Ullai@) + 1Pl L2(q)/m < 7C(Q).

Remarkl. The pressure verifies the relation (16), which meansplsatisfies the relation of
Patankar et al. [5].
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84. Navier-Stokes Equations

One takes again the assumptions of the Stokes problem given above.cHRrgiven, one
considers the following problem

Findu € V such that

+1
() Y eV, / Du.l]vdx+b(u,u,v):7t/ vi(1,y) dy,
Q -1

with
b(u,u,v):/(u.D)v.de.
Q

With an aim of establishing the existence of the solutions of the prolléfiy”’), one uses
the Brouwer fixed point theorem (see [4, 6]). One will show it.

Theorem 3. The problem(.#".’) has at least a solution € V. Moreoveru satisfies the
estimate(1).

Proof. To show the existence af, one constructs the approximate solutions of the problem
(A.#)by the Galerkin method and then thanks to the compactness arguments, one proves
by passing to the limits some convergence properties.

i) For each fixed integen > 1, one defines an approximate solutignof (.#".) by
m
Un= ) OimWi, Wwith gmn€eR,
m i; Imvvi Im (17)
((Um, Wi)) + b(Um, Um,Wi) = (Zn,Wi)r , i=1,....m

whereVin = (wa,...,wn) is the vector space spanned by the vectors .., wyn and{w;} is

an Hilbertian basis 0¥ which is separable. Let us note that (17) is equivalent to:

1

W € Vi, (V) + Bl Um ) = [ va (L) . (18)

With an aim to establish the existence of the solutions of the prohbigthe operator as

follows is considered
Pm: Vm — Vm
u +— Pn(u)

defined by

+1
.Y € Vi, (Pr(W),)) = () +b(uuv) =7 [ va(Ly)dy
Let us note initially that R is continuous and
Yu eV, b(u,u,u) =0.

Indeed, thanks to the Green formula, one has

b(u7u,u):—%/Q|u\2divudx+%/r(u.n)\u|2dcy:07
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and one takes into account that div- 0 in Q and
/(u.n) 2 do = / (u.n)|uf? dc+/ (u.n)|u? do.
r lo M
Thanks to Brouwer Theorem, there existgsatisfying (18) and

[Umllp1 ) < wC(Q).

i) We can extract a subsequengesuch that
Uy —=u weakly in V,

and thanks to the compact imbeddingvoin L?(Q)?, we obtain
+1
w eV, ((uv))+b(u,u,v)= n/ v (1,y) dy.
-1

As for the Stokes problem, one shows the existence afL?(Q), unique except for an
additive constant, such that the variational problem.) leads to

—Au+ (u.0)u+0Op=0 in Q,

divu=0 in Q,
u=20 on I,
ulr1 :u|ro’

with following boundary conditions

du
X

_ou
r, X

Mo

p|rl = p|r0 —-r. O
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