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STOKES AND NAVIER-STOKES EQUATIONS

WITH PERIODIC BOUNDARY CONDITIONS AND

PRESSURE LOSS

Chérif Amrouche, Macaire Batchi and Jean Batina

Abstract. The object of this present work is to show the existence and uniqueness results
for the Stokes and Navier-Stokes equations which model the laminar flow of an incom-
pressible fluid inside a two-dimensional plane channel with periodic sections. The data
of the pressure loss coefficient in the channel enables us to establish a relation on the
pressure and to thus formulate an equivalent problem.
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§1. Introduction

The problem which one proposes to study here is that modelling a laminar flow inside a
two-dimensional plane channel with periodic section. LetΩ be an open bounded connected
lipschitzian set ofR2 (see figure hereafter), and its boundaryΓ is Γ = Γ0∪Γ1∪Γ2, where
Γ0 = {0}× ]−1,1[ andΓ1 = {1}× ]−1,1[. One defines the space

V =
{

v ∈ H1 (Ω) ; divv = 0, v = 0 on Γ2, v|Γ0
= v|Γ1

}
.

Here, there are not external forces and viscosity is equal to 1. Thus forπ ∈ R given, one
considers the problem

(S )

 Findu ∈V such that

∀v ∈V,
∫

Ω
∇u.∇vdx = π

∫ +1

−1
v1 (1,y) dy.

§2. Stokes problem(S )

With an aim of drawing up the suitable functional framework of the problem, firstly one
proposes to study the problem(S ).

Theorem 1. Problem(S ) has an unique solutionu ∈V. Moreover, there exists a constant
depending only onΩ, C(Ω) > 0, such that:

‖u‖H1(Ω) ≤ π C(Ω). (1)
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Figure 1: Geometry of channel

Proof. Let us note initially that spaceV provided the normH1 (Ω)2 being a closed subspace
of H1 (Ω)2 is thus an Hilbert space. Let us set

a(u,v) =
∫

Ω
∇u.∇vdx, l (v) = π

∫ +1

−1
v1 (1,y) dy.

It is clear, thanks to the Poincaré inequality, that the bilinear continuous form isV-coercive.
It is easy to also see thatl ∈V ′. One deduces from Lax-Milgram Theorem the existence and
uniqueness ofu solution of(S ) . Moreover,

∫
Ω
|∇u|2dx≤ π

√
2

(∫ +1

−1
|u1 (1,y)|2dy

)1/2

,

i.e.
‖∇u‖2L2(Ω) ≤ π

√
2‖u‖L2(Γ) ≤ π

√
2‖u‖H1/2(Γ) .

Thanks to the trace Theorem properties, finally one gets

‖∇u‖2L2(Ω) ≤ πC1 (Ω)‖u‖H1(Ω) ,

which implies the estimate (1).

§3. Equivalent formulation of problem (S )

We now will give an interpretation of the problem(S ). One introduces the space

V =
{

v ∈D (Ω)2 ; divv = 0
}

.

Let u be the solution of(S ). Then, for allv ∈ V , one has

〈−∆u,v〉D ′(Ω)×D(Ω) = 0.
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So that thanks to De Rham Theorem, there existsp∈D ′ (Ω) such that

−∆u+∇p = 0 in Ω. (2)

Moreover, since∇p∈ H−1 (Ω)2, it is known that there existsq∈ L2 (Ω) such that (see [1])

∇q = ∇p in Ω. (3)

The open setΩ being connected, there existsC ∈ R such thatp = q+C, what means that
p∈ L2 (Ω). Let us recall that (see [1])

inf
K∈R
‖p+K‖L2(Ω) ≤C‖∇p‖H−1(Ω)2 .

One deduces from the estimate (1) and from (2) that

inf
K∈R
‖p+K‖L2(Ω) ≤C ‖∆u‖H−1(Ω)2 ≤C‖u‖H1(Ω)2 ≤ πC (Ω) .

Sinceu∈H1 (Ω)2 and0=−∆u+∇p∈ L2 (Ω)2, it is shown that−∂u/∂n+ pn∈H−1/2 (Γ)2

and one has the Green formula: for allv ∈V,∫
Ω

(−4u+∇p) .vdx =
∫

Ω
∇u.∇vdx+

〈
−∂u

∂n
+ pn,v

〉
, (4)

where the bracket represents the duality productH−1/2 (Γ)×H1/2 (Γ). Moreover, asp ∈
L2 (Ω) and4p = 0 in Ω, one hasp∈ H−1/2 (Γ). Consequently, one has therefore∂u/∂n ∈
H−1/2 (Γ)2. The functionu being solution of(S ), for all v ∈ V, one has according to (2)
and (4): 〈

∂u
∂n
− pn,v

〉
= π

∫ +1

−1
v1 (1,y) dy, (5)

i.e. 〈
∂u
∂x
− pe1,v

〉
Γ1

+
〈
−∂u

∂x
+ pe1,v

〉
Γ0

= 〈πe1,v〉Γ1
, (6)

where{ei} is the orthonormal basis.

i) Let µ ∈ H1/2
00 (Γ1) and let us set

µ2 =

{
µ, on Γ0∪Γ1,

0, on Γ2,
and µµµ =

(
0
µ2

)
,

where (see [2])

H1/2
00 (Γ1) =

{
ϕ ∈ L2(Γ1) ; ∃v ∈ H1(Ω), with v|Γ2

= 0, v|Γ0∪Γ1
= ϕ

}
.

It is checked easily that

µµµ ∈ H1/2 (Γ)2 and
∫

Γ
µµµ.ndσ = 0.
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So that there existsv ∈ H1 (Ω)2 satisfying (see [3])

divv = 0 in Ω and v = µµµ on Γ.

In particularv ∈V and according to (6), this yields〈
∂u2

∂x
,µ

〉
Γ1

=
〈

∂u2

∂x
,µ

〉
Γ0

,

which means that
∂u2

∂x

∣∣∣∣
Γ1

=
∂u2

∂x

∣∣∣∣
Γ0

. (7)

One deduces now from (6) that, for allv ∈V,〈
∂u1

∂x
− p,v1

〉
Γ1

+
〈
−∂u1

∂x
+ p,v1

〉
Γ0

= 〈π,v1〉Γ1
. (8)

But, divu = 0 andu2|Γ1
= u2|Γ0

, one thus has

∂u2

∂y

∣∣∣∣
Γ1

=
∂u2

∂y

∣∣∣∣
Γ0

and
∂u1

∂x

∣∣∣∣
Γ1

=
∂u1

∂x

∣∣∣∣
Γ0

. (9)

Consequently, thanks to (8) one deduces:

〈−p,v1〉Γ1
+ 〈p,v1〉Γ0

= 〈π,v1〉Γ1
(10)

ii) While proceeding as ini), one shows that

p|Γ1
= p|Γ0

−π (11)

where the equality takes place with theH1/2 sense. In short, ifu ∈ H1 (Ω)2 is solution of
(S ), then there existsp∈ L2 (Ω), unique up to an additive constant, such that:

−∆u+∇p = 0 in Ω, (12)

divu = 0 in Ω, (13)

u = 0 on Γ2, u|Γ1
= u|Γ0

, (14)

∂u
∂x

∣∣∣∣
Γ1

=
∂u
∂x

∣∣∣∣
Γ0

, (15)

p|Γ1
= p|Γ0

−π. (16)

It is clear that, if(u, p) ∈ H1 (Ω)2×L2 (Ω) checks (12)–(16), thenu is solution of(S ).

Theorem 2. The problem (12)–(16) has an unique solution(u, p) ∈ H1 (Ω)2×L2 (Ω), up to
an additive constant for p. Moreover,u verifies(S ) and

‖u‖H1(Ω) +‖p‖L2(Ω)/R ≤ π C(Ω) .

Remark1. The pressure verifies the relation (16), which means thatp satisfies the relation of
Patankar et al. [5].
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§4. Navier-Stokes Equations

One takes again the assumptions of the Stokes problem given above. Forπ ∈ R given, one
considers the following problem

(N S )

 Findu ∈V such that

∀v ∈V,
∫

Ω
∇u.∇vdx+b(u,u,v) = π

∫ +1

−1
v1 (1,y) dy,

with
b(u,u,v) =

∫
Ω
(u.∇)v.wdx.

With an aim of establishing the existence of the solutions of the problem(N S ), one uses
the Brouwer fixed point theorem (see [4, 6]). One will show it.

Theorem 3. The problem(N S ) has at least a solutionu ∈ V. Moreover,u satisfies the
estimate(1).

Proof. To show the existence ofu, one constructs the approximate solutions of the problem
(N S )by the Galerkin method and then thanks to the compactness arguments, one proves
by passing to the limits some convergence properties.

i) For each fixed integerm≥ 1, one defines an approximate solutionum of (N S ) by

um =
m

∑
i=1

gimwi , with gim ∈ R,

((um,wi))+b(um,um,wi) = 〈πn,wi〉Γ1
, i = 1, . . . ,m

(17)

whereVm = 〈w1, . . . ,wm〉 is the vector space spanned by the vectorsw1, . . . ,wm and{wi} is
an Hilbertian basis ofV which is separable. Let us note that (17) is equivalent to:

∀v ∈Vm, ((um,v))+b(um,um,v) = π

∫ +1

−1
v1 (1,y) dy. (18)

With an aim to establish the existence of the solutions of the problemum, the operator as
follows is considered

Pm : Vm −→ Vm

u 7−→ Pm(u)

defined by

∀u,v ∈Vm, ((Pm(u) ,v)) = ((u,v))+b(u,u,v)−π

∫ +1

−1
v1 (1,y) dy.

Let us note initially that Pm is continuous and

∀u ∈V, b(u,u,u) = 0.

Indeed, thanks to the Green formula, one has

b(u,u,u) =−1
2

∫
Ω
|u|2divudx+

1
2

∫
Γ
(u.n) |u|2 dσ = 0,
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and one takes into account that divu = 0 in Ω and∫
Γ
(u.n) |u|2 dσ =

∫
Γ0

(u.n) |u|2 dσ +
∫

Γ1

(u.n) |u|2 dσ .

Thanks to Brouwer Theorem, there existsum satisfying (18) and

‖um‖H1(Ω) ≤ π C(Ω).

ii) We can extract a subsequenceuν such that

uν ⇀ u weakly in V,

and thanks to the compact imbedding ofV in L2(Ω)2, we obtain

∀v ∈V, ((u,v))+b(u,u,v) = π

∫ +1

−1
v1 (1,y) dy.

As for the Stokes problem, one shows the existence ofp ∈ L2 (Ω), unique except for an
additive constant, such that the variational problem(N S ) leads to

−∆u+(u.∇)u+∇p = 0 in Ω,
divu = 0 in Ω,
u = 0 on Γ2,
u|Γ1

= u|Γ0
,

with following boundary conditions

∂u
∂x

∣∣∣∣
Γ1

=
∂u
∂x

∣∣∣∣
Γ0

p|Γ1
= p|Γ0

−π.
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