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SYSTEMS OF SCHRODINGER EQUATIONS:
POSITIVITY AND NEGATIVITY

Bénédicte Alziary, Jacqueline Fleckinger
and Marie-Héléne Lécureux

Abstract. We consider here Schrédinger operatdk+ q(x)e defined in the entire space

RN, with a potentialg tending to+co at infinity with a sufficiently fast growth. The
ground state positivity and negativity for a Schrédinger equation with spectral parameter
says that, if the spectral parameter is lower than the principal eigenvalue, the solutions
satisfy ground state positivity (greater than a positive constant times the ground state)
and if the spectral parameter is slightly greater than the principal eigenvalue, then the
solutions satisfy ground state negativity (lower than minus a positive constant times the
ground state). We extend this ground state positivity and negativity to cooperative and
noncooperative systems of two Schrodinger equations.
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81. Introduction

Positivity or negativity of weak 2-solutions of a linear partial differential equation with the
Schrddinger operator,
—Au+gx)u—Au=f(x) in RN, (1)

has been a subject of a number of research articles and monographs, see e.g. Alziary, Fle-
ckinger and Tak&[3, 5], Alziary and Taka [2], and many others. Heré,is a given function
satisfying 0< f Z 0 in RN (N > 1), andA stands for the spectral parameter. kgtdenote
the positive eigenfunction associated with the principal eigenvajuef the Schrédinger
operatore = —A+q(x)e in L2(RN). Assume that the potentig(x) is radially symmetric
and grows fast enough near infinity, aht a “sufficiently smooth” perturbation of a radially
symmetric functionf # 0 and 0< f/¢ < C = const a.e. irRN. For such equation (1), it is
possible to show that satisfies the ground state positivity fereo < A < 41 (i.e.,u> ceq
with ¢ = const> 0) and satisfies the ground state negativelfor A < A1+ 06 (i.e.,u< —cey
with ¢ = const> 0), whereé > 0 is a number depending dn The constant > 0 depends
on bothA andf.

In their book, Protter and Weinberger [12] give a maximum principle for weakly coupled
systems of essentially positive elliptic equations. Then several authors revisited the problem
in the case of a bounded domain, De Figueiredo and Mitidieri [10], Mitidieri and Sweers [11]
and Cosner and Schaefer [9] for the maximum principle. The anti-maximum, always for
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bounded domain, was studied in particular by Sweers [13] andCTakd. For a system of
Schrédinger equations on the whole space, Abakhti-Mchachti and Fleckinger [6] or Alziary,
Cardoulis and Fleckinger [1] obtained the maximum principle for a cooperative system but
not the ground state positivity. Alziary, Fleckinger and T&k4] proved the ground state
positivity for a cooperative system and fo2x 2) noncooperative system by inserting the
(2 x 2) noncooperative system into (& x 3) cooperative one. Recently Besbas [7] gave
a result concerning ground state negativity for particular cooperative system. Note that all
those results are obtained for radially symmetric potential.

Here our purpose is to show, or{2x 2) systems of Schrddinger equations in the whole
spaceRN, how to obtain ground state positivity and negativity for cooperative and noncoop-
erative system. We consider the following system :

P (u) B (—A+q(x)o 0 ) (u) _ (ku+au+ bv-+ f) @
v) 0 —A+qg(x)e/ \v)  \Av+cu+dv+g/”

The functionsf andg are inL?(R") andA is a spectral parameter. The coefficieatb, c,d
are constant and we denoteldy= (2 3) If b>0andc> 0, the system is called cooperative.
Instead of inserting th€ x 2) noncooperative system intg @ x 3) cooperative one,the idea
is to use for both cooperative and noncooperative systems the decomposition of the resolvant
(A1 —Z)Lfor A neari;.

This article is organized as follows. In Section 2 we give some notations and definitions
and we state our main result, Theorem 1. In Section 3 we first recall the result for the single

equation. Indeed the proof of the theorem 1 will use the ground state positivity and negativity
for one equation. Finally in Section 4, we give the proof of our main result.

§2. Main Result

The Schrédinger operatey denotes the selfadjoint extension of the symmetric operator in
L?(R") defined by

Au=—Au+q(x)u for xe R" and ue C3(R").

The potentialg € Lj5.(R"), tending to infinity whenx| goes to infinity, is supposed to be
greater than some positive constan, €st< q(x). With such hypotheses on the potential,
the spectrum of/ consists on a sequence of positive eigenvalues tending to infinity. The

smallest one}; is given by the Rayley quotient

A= inf /Dzd / 2dx with w=1b
v=int ok [ amoluta it ulzge

where the weighted spabf is defined as follows:

Vq(R") = {ue L?(R") : /W\Du|2dx+/an(x)|u|2dx< oo}.

This principal eigenvalué; is associated with a positive eigenfunctign> 0 normalized
by H(p1||Ez(Rn> = 1. This positive eigenfunctiop, > 0 is called the ground state. The domain
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of the operator is denoted by
P(o) = {ueVy(R" : (-A+q)ue L2(R")}.

Finally, let us recall the definition of the ground state positivity and negativity, introduced
by Alziary, Fleckinger and Taka[2, 3]

Definition 1. A function u € L?(RN) satisfies theground state positivityf there exists a
constant > 0 such that

u>ce1 almost everywhere ifRN.

Analogouslyu € L?(RN) satisfies theround state negativitif there exists a constant> 0
such that
u< —ce; almosteverywhere itN.

The ground state positivity (or ground state negativity) of a sufficiently smooth solution
to the equation (1), fok < A1 (or A1 < A < A1+ 9, respectively), is an important result with
numerous applications to both linear and nonlinear elliptic probleriilinsee Alziary and
Tak& [2]. Here,d is a positive number depending upbn

Those results are similar to the maximum or anti-maximum principle in a bounded do-
mainQ c RN, N > 1, which have been established in the work of Clément and Peletier [8],
Sweers [13] and Tak4[14]. But the case of the Schrédinger operatortba- RN is more
difficult; the hypothesid € LP(Q) (p > N) is no longer sufficient. We need to take a smaller
space forf, namely, a strongly ordered Banach spAdeatroduced in Alziary and Takd[2]:

X={uel?RN): u/g; € L°(RV)}, (3)
endowed with the ordered norm
[ully =inf{C € R: |u| <Ceq; almost everywhere iiRN}. 4)

The ordering <" on X is the natural pointwise ordering of functions. This means hat
an ordered Banach space whose positive ¢bnhas nonempty interiox.. .

We denote by(r,X) the spherical coordinates &, that is,x = rx’ ¢ RN, wherer = |x|
andx =r~1xe SN-1if x#£ 0; we setr = 0 and leaved € SN~1 arbitrary ifx = 0. As usual,
SV-1 denotes the unit sphere RN centered at the origin. We refer tandx as the radial
and azimuthal variables, respectively. The surface measug chis denoted bys; we let
on_1 = o(SV71) be the surface area 6N,

For anya > 0, we introduce the Banach spax&? of all functionsf € L ,(RN) having
the following properties:

[(—0s)*/?f](r,e) € L2(SN1)  forall r >0,

whereAs denotes the Laplace-Beltrami operator on the spB¥ré, and there is a constant
C > 0 such that, for almost every> 0,

[ ex)Pdoe) - —— [

ON-1 JoN-1 On_1 (89 21](r,X)|” do(X) < [Cou(r)]2.
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The smallest such consta@tefines the normif ||y« in X*2. Notice that, forf (x) = (|x]),
we havef € X*? < f € X together with the normgf|ya2 = | f||x. Furthermore, if
o> T then X®?2 is continuously imbedded int¥, by the Sobolev imbedding theorem
for W*2(SN-1) < Cc(SN-1). Of course, the Hilbert spady/*?(SN-1) is defined to be the
domain of(—As)*/2 in L?(SV-1) endowed with the graph norm.

TakingN > 2, we establish the ground state positivity and negativityff@andg from
the Banach spac¥®2. The necessity of such a restriction for the Schrédinger operator in
L?(RN) has been discussed and partly justified in [3, Remark 2.1 and Lemma 2.2] and in [4,
Example 4.1].

In order to formulate our hypothesis on the potentia), x € RN, we first introduce the
following class of auxiliary function®(r) of r = |x|, Ry < r < o, for someRy > O:

{Q(r) > 0, Qis locally absolutely continuous, ©)

Q(r) >0, and [ Q(r)~¥2dr < .

We assume that the potentigis radially symmetricg(x) = q(|x|), x € RN, whereq(r) is
a Lebesgue measurable function satisfying the following hypothesis, with some auxiliary
functionQ(r) which obeys (5):
The potentialg : R — R is locally essentially boundedj(r) >
const> 0 for r > 0, and there exists a constant > 0 such that (H)
c1Q(r) <q(r) for Ro <r < co.
We always suppose thit satisfies
a>0,d>0¢c#£0, anda>d,
D = (a—d)?>+4bc> 0.
Hypotheses > 0, d > 0 anda > d can always be satisfied by adding a constant times
in both sides of the first equation, a constant tim@sboth sides of the second equation and

eventually switching the two equations to get d. But the matrixM must not have complex
eigenvalues. SM has the two following eigenvalues:

., _at+d+vD _ _at+d-vD
pr=——-— and p =—-o_——,
2 2
Let us, now, formulate our main result.
Theorem 1. Let the hypothesdsl) and (Hy) be satisfied. Assume that u and v ar&ifn)

and satisfy the system (2) with f et g i¥%X for someor > N1, f 4 sg>0a.e.in
RN and f+

(Hwm)

(a— d)+f
+fg > 01in some set of positive Lebesgue measure.

. Beforellf
there exists a positive numbér (depending upon f, g and M) such that, for every
Ae(A—put—8,4—u"), inequalities

u>cyp1 and v>cy@; in RN inthe case ¢ 0, (6)
u>cy@r and v< —c, @ in R\ inthe case &< 0, 7

are valid with two constants,c> 0 and g, > 0 (depending upon f, g, M antl).
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o Afteri; —u™:
there exists a positive numbér (depending upon f, g and M) such that, for every
Ae(A—put, A1 —ut+8), inequalities

u< —cy@1 and v< —c, ¢ in RN inthe case ¢ 0, (8)
u<—cy1 and v>cyp; in RN inthe case & 0, 9)

are valid with two constants,c> 0 and g, > 0 (depending upon f, g, M art)).

83. Some known results for a single equation on the whole space

The following theorem was established by Alziary, Fleckinger and Gafiidst for R? in [3]
and then using Fourier series with spherical harmonic&fbin [5].

Theorem 2. Let the hypothesiéH) be satisfied. Assume thatu?(«), Zu—Au=f €
L2(RN), A € R, and f> 0 a.e. inRN with f > 0in some set of positive Lebesgue measure.
Then, for everl € (—o, A1), there exists a constante 0 (depending upon f and) such
that

u>ce; in RN (10)

Moreover, if also fe X%2 for someo > % then there exists a positive numldefdepend-
ing upon f) such that, for evety € (11,41 + 8), the inequality

u<—cep in RN (11)
is valid with a constant ¢ 0 (depending upon f andl).

In fact, the proof of this result gives more precisions about the behaviour of the constant
cwhenA goes tod;. The next remark details how the constant depends dipomt.

Remarkl. ForA < A1, A neard;, we haveu > C(f,A)p1, withC(f,A) = ﬁ‘fl“i_ffl -r,f)
and limy_,;, T(A, f) =T <. So wheml goes tod;, u becomes very large. By the strong

i inei £l
maximum principle, we have alga| < (M—ﬁ) 01.

For A > Aq, A nearis, we getu < —C(f,A)@q, with C(f,A) = % —T(A,f) and
limy_, F(A,f) =T <. Sowhem goes tod;, —u becomes very large. The proof of this
remark is given in [7].

84. Proof of the Theorem

Proof. The two eigenvectorg™ andv— associated respectively with the eigenvaluésand

p- are
a—d+v/D b
v+:( 2 ) and V_:<ad+\/5)'
2

So the system can be rewritten
~Al+qli=A+ut)d+f inR"
AN+ q=(A+u")V+g§ inR"
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with

. ~ 2b
B0 Qo) = v, )
v v g g VD \aa B 1

The two functionsiandv'are solutions of the two independent following equations:

L -1 2b
—Au+qu_(l+u+)u+m(f+(a_deg), (12)
1 —2c
ﬁ((a )+mf+g)' 43)

After solving those two equations, the initial functiamandv could be calculated by

AT+ QU= (A +p )T+

u— 7(a_d>2+ma—b\7, (14)
v=cli+ w 7. (15)

We supposé. < A1 —u~, and so the equation (13) satisfies the maximum principle. The
function f andg are inX and so for some consta@, we have

V1 < (A=A —p") 'Capr. (16)
e Forl < A1 —u*t <A1 —u, the equation (12) satisfies the fundamental positivity, so
we have
V| < S <G @1 and U>C(A,f)er,

A S
with C(A, f) which goes tof- whenA tends tol;.

Consequentlyy Stays bounded anglbecomes very large positive whangoes tol;.
So there exists a positive numh&idepending uporf, g andM) such that, for every
A€ (MA—ut—68,A—u"), by (14) and (15), we get farandy, in the case > 0,

u>cypr and v>cup1, Cyandc, are positive constants

In that case, it is possible to show, using the Neumann series for the resgltent
)71, that the ground state positivity is true for all< A; — u™*.

Of course, forc < 0, we have,

u>cypr and v<-—c, Cyandc, are positive constants

e Ford; —u™ <A < A1 —u~, the upper bound (16) stays valid and (12) satisfies the
ground state negativity, so there exists< u* — p~ such that for everjl € (43 —
ut A4 —ut + &), we have

V] < Al—%{p— ¢1= 7 7%_ —5 0 and U< —C(2, g,
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with C(A, f) which goes tof-c whenA tends tol;.

Consequentlyy Stays bounded angdbecomes very large negative whergoes to;.
So there exists a positive numh&(depending uporf, g andM) such that, for every
Ae(M—ut, 2 —ut+38), by (14) and (15) we get farandy, in the case > 0,

u<—cyp; and v<-—cy, ¢, andc, are positive constants
Of course, forc < 0, we have

u<—cyp1r and v>cyp1, ¢y andc, are positive constants [
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