An incremental Non-Dominated Sorting framework based on Irreducible Domination Graphs

Alberto, I.¹, Lahoz, D.¹, Mateo, P.M.²

SUMMARY

Non-Dominated Sorting process, NDS, plays an important role in Pareto based Evolutionary Multi-Objective Optimization Algorithms and it is one of the most time consuming tasks, mainly when steady-state Evolutionary Algorithms are considered. In this work we present a general framework to carry out the NDS process and three implementations based on a modification of the Irreducible Domination Graph structure, IDG, presented in Alberto and Mateo (2004) [1] for accomplishing this task.

Our algorithms are benchmarked against other NDS algorithms focused on incremental updating of Pareto layers ([2], [3], [4]). The experiments accomplished show that the implementation of the proposed algorithms reduce, in general, the number of Pareto comparisons as well as the time needed when compared with the competitors.

Keywords: Non-dominated Sorting, Multi-objective Optimization, Graphs

AMS Classification: 90-08,68W50, 90C29

References

- [1] I. Alberto and P. M. Mateo, Representation and management of MOEA populations based on graphs, European Journal of Operational Research 159 (1) (2004) 52–65. https://doi.org/10.1016/S0377-2217(03)00405-3 doi:10.1016/S0377-2217(03)00405-3.
- [2] K. Li, K. Deb, Q. Zhang, and Q. Zhang, Efficient Nondomination Level Update Method for Steady-State Evolutionary Multiobjective Optimization, IEEE Transactions on Cybernetics 47 (9) (2017) 2838–2849. https://doi.org/10.1109/TCYB.2016.2621008 doi:10.1109/TCYB.2016.2621008.
- [3] S. solution Mishra, S. Mondal and S. Saha, Improved to the domination level update problem, Applied Soft Computing (2017)336 - 362. http://arxiv.org/abs/1510.04796 arXiv:1510.04796, https://doi.org/10.1016/j.asoc.2017.06.038.
- [4] I. Yakupov and M. Buzdalov, Improved incremental non-dominated sorting for steady-state evolutionary multiobjective optimization, GECCO 2017 Proceedings of the 2017 Genetic and Evolutionary Computation Conference (2017) 649–656. https://doi.org/10.1145/3071178.3071307 doi:10.1145/3071178.3071307.

¹Departamento de Métodos Estadísticos, Escuela de Ingeniería y Arquitectura Universidad de Zaragoza email: isolina@unizar.es, davidla@unizar.es

²Departamento de Métodos Estadísticos, Facultad de Ciencias Universidad de Zaragoza email: mateo@unizar.es